1,206 research outputs found

    Endurance of SN 2005ip after a decade: X-rays, radio, and H-alpha like SN 1988Z require long-lived pre-supernova mass loss

    Full text link
    SN2005ip was a TypeIIn event notable for its sustained strong interaction with circumstellar material (CSM), coronal emission lines, and IR excess, interpreted as shock interaction with the very dense and clumpy wind of an extreme red supergiant. We present a series of late-time spectra of SN2005ip and a first radio detection of this SN, plus late-time X-rays, all of which indicate that its CSM interaction is still strong a decade post-explosion. We also present and discuss new spectra of geriatric SNe with continued CSM interaction: SN1988Z, SN1993J, and SN1998S. From 3-10 yr post-explosion, SN2005ip's H-alpha luminosity and other observed characteristics were nearly identical to those of the radio-luminous SN1988Z, and much more luminous than SNe1993J and 1998S. At 10 yr after explosion, SN2005ip showed a drop in Hα\alpha luminosity, followed by a quick resurgence over several months. We interpret this variability as ejecta crashing into a dense shell located at around 0.05 pc from the star, which may be the same shell that caused the IR echo at earlier epochs. The extreme H-alpha luminosities in SN2005ip and SN1988Z are still dominated by the forward shock at 10 yr post-explosion, whereas SN1993J and SN1998S are dominated by the reverse shock at a similar age. Continuous strong CSM interaction in SNe~2005ip and 1988Z is indicative of enhanced mass loss for about 1e3 yr before core collapse, longer than Ne, O, or Si burning phases. Instead, the episodic mass loss must extend back through C burning and perhaps even part of He burning.Comment: 14 pages, 8 figs. accepted in MNRA

    A new and unusual LBV-like outburst from a Wolf–Rayet star in the outskirts of M33

    Get PDF
    MCA-1B (also called UIT003) is a luminous hot star in the western outskirts of M33, classified over 20 yr ago with a spectral type of Ofpe/WN9 and identified then as a candidate luminous blue variable (LBV). Palomar Transient Factory data reveal that this star brightened in 2010, with a light curve resembling that of the classic LBV star AF And in M31. Other Ofpe/WN9 stars have erupted as LBVs, but MCA-1B was unusual because it remained hot. It showed a WN-type spectrum throughout its eruption, whereas LBVs usually get much cooler. MCA-1B showed an almost four-fold increase in bolometric luminosity and a doubling of its radius, but its temperature stayed ≳29 kK. As it faded, it shifted to even hotter temperatures, exhibiting a WN7/WN8-type spectrum, and doubling its wind speed. MCA-1B is reminiscent of some supernova impostors, and its location resembles the isolated environment of SN 2009ip. It is most similar to HD 5980 (in the Small Magellanic Cloud) and GR 290 (also in M33). Whereas these two LBVs exhibited B-type spectra in eruption, MCA-1B is the first clear case where a Wolf–Rayet (WR) spectrum persisted at all times. Together, MCA-1B, HD 5980, and GR 290 constitute a class of WN-type LBVs, distinct from S Doradus LBVs. They are most interesting in the context of LBVs at low metallicity, a possible post-LBV/WR transition in binaries, and as likely Type Ibn supernova progenitors

    The Gravity Collective: A Search for the Electromagnetic Counterpart to the Neutron Star-Black Hole Merger GW190814

    Get PDF
    We present optical follow-up imaging obtained with the Katzman Automatic Imaging Telescope, Las Cumbres Observatory Global Telescope Network, Nickel Telescope, Swope Telescope, and Thacher Telescope of the LIGO/Virgo gravitational wave (GW) signal from the neutron star-black hole (NSBH) merger GW190814. We searched the GW190814 localization region (19 deg2 for the 90th percentile best localization), covering a total of 51 deg2 and 94.6% of the two-dimensional localization region. Analyzing the properties of 189 transients that we consider as candidate counterparts to the NSBH merger, including their localizations, discovery times from merger, optical spectra, likely host galaxy redshifts, and photometric evolution, we conclude that none of these objects are likely to be associated with GW190814. Based on this finding, we consider the likely optical properties of an electromagnetic counterpart to GW190814, including possible kilonovae and short gamma-ray burst afterglows. Using the joint limits from our follow-up imaging, we conclude that a counterpart with an r-band decline rate of 0.68 mag day-1, similar to the kilonova AT 2017gfo, could peak at an absolute magnitude of at most -17.8 mag (50% confidence). Our data are not constraining for "red"kilonovae and rule out "blue"kilonovae with M > 0.5 M o˙ (30% confidence). We strongly rule out all known types of short gamma-ray burst afterglows with viewing angles <17° assuming an initial jet opening angle of ∼5.°2 and explosion energies and circumburst densities similar to afterglows explored in the literature. Finally, we explore the possibility that GW190814 merged in the disk of an active galactic nucleus, of which we find four in the localization region, but we do not find any candidate counterparts among these sources. © 2021. The American Astronomical Society. All rights reserved.

    SN2013fs and SN2013fr: Exploring the circumstellar-material diversity in Type II supernovae

    Full text link
    We present photometry and spectroscopy of SN2013fs and SN2013fr in the first 100 days post-explosion. Both objects showed transient, relatively narrow Hα\alpha emission lines characteristic of SNeIIn, but later resembled normal SNeII-P or SNeII-L, indicative of fleeting interaction with circumstellar material (CSM). SN2013fs was discovered within 8hr of explosion. Its light curve exhibits a plateau, with spectra revealing strong CSM interaction at early times. It is a less luminous version of the transitional SNIIn PTF11iqb, further demonstrating a continuum of CSM interaction intensity between SNeII-P and IIn. It requires dense CSM within 6.5×\times1014^{14}~cm of the progenitor, from a phase of advanced pre-SN mass loss shortly before explosion. Spectropolarimetry of SN2013fs shows little continuum polarization, but noticeable line polarization during the plateau phase. SN2013fr morphed from a SNIIn at early times to a SNII-L. After the first epoch its narrow lines probably arose from host-galaxy emission, but the bright, narrow Hα\alpha emission at early times may be intrinsic. As for SN2013fs, this would point to a short-lived phase of strong CSM interaction if proven to be intrinsic, suggesting a continuum between SNeIIn and II-L. It is a low-velocity SNII-L, like SN2009kr but more luminous. SN2013fr also developed an IR excess at later times, due to warm CSM dust that require a more sustained phase of strong pre-SN mass loss.Comment: MNRAS accepted. 28 pages, 23 figures, 8 table
    corecore