1,435 research outputs found
Topological inference for EEG and MEG
Neuroimaging produces data that are continuous in one or more dimensions.
This calls for an inference framework that can handle data that approximate
functions of space, for example, anatomical images, time--frequency maps and
distributed source reconstructions of electromagnetic recordings over time.
Statistical parametric mapping (SPM) is the standard framework for whole-brain
inference in neuroimaging: SPM uses random field theory to furnish -values
that are adjusted to control family-wise error or false discovery rates, when
making topological inferences over large volumes of space. Random field theory
regards data as realizations of a continuous process in one or more dimensions.
This contrasts with classical approaches like the Bonferroni correction, which
consider images as collections of discrete samples with no continuity
properties (i.e., the probabilistic behavior at one point in the image does not
depend on other points). Here, we illustrate how random field theory can be
applied to data that vary as a function of time, space or frequency. We
emphasize how topological inference of this sort is invariant to the geometry
of the manifolds on which data are sampled. This is particularly useful in
electromagnetic studies that often deal with very smooth data on scalp or
cortical meshes. This application illustrates the versatility and simplicity of
random field theory and the seminal contributions of Keith Worsley
(1951--2009), a key architect of topological inference.Comment: Published in at http://dx.doi.org/10.1214/10-AOAS337 the Annals of
Applied Statistics (http://www.imstat.org/aoas/) by the Institute of
Mathematical Statistics (http://www.imstat.org
Action and behavior: a free-energy formulation
We have previously tried to explain perceptual inference and learning under a free-energy principle that pursues Helmholtz’s agenda to understand the brain in terms of energy minimization. It is fairly easy to show that making inferences about the causes of sensory data can be cast as the minimization of a free-energy bound on the likelihood of sensory inputs, given an internal model of how they were caused. In this article, we consider what would happen if the data themselves were sampled to minimize this bound. It transpires that the ensuing active sampling or inference is mandated by ergodic arguments based on the very existence of adaptive agents. Furthermore, it accounts for many aspects of motor behavior; from retinal stabilization to goal-seeking. In particular, it suggests that motor control can be understood as fulfilling prior expectations about proprioceptive sensations. This formulation can explain why adaptive behavior emerges in biological agents and suggests a simple alternative to optimal control theory. We illustrate these points using simulations of oculomotor control and then apply to same principles to cued and goal-directed movements. In short, the free-energy formulation may provide an alternative perspective on the motor control that places it in an intimate relationship with perception
Atypical eye contact in autism: Models, mechanisms and development
An atypical pattern of eye contact behaviour is one of the most significant symptoms of Autism Spectrum Disorder (ASD). Recent empirical advances have revealed the developmental, cognitive and neural basis of atypical eye contact behaviour in ASD. We review different models and advance a new ‘fast-track modulator model’. Specifically, we propose that atypical eye contact processing in ASD originates in the lack of influence from a subcortical face and eye contact detection route, which is hypothesized to modulate eye contact processing and guide its emergent specialization during development
Development of lanthanum nickelate as a cathode for use in intermediate temperature solid oxide fuel cells
The performance of lanthanum nickelate, La2NiO4+δ (LNO), as a cathode in IT-SOFCs with the electrolyte cerium gadolinium oxide, Ce0.9Gd0.1O2−δ (CGO), has been investigated by AC impedance spectroscopy of symmetrical cells. A significant reduction in the area specific resistance (ASR) has been achieved with a layered cathode structure consisting of a thin compact LNO layer between the dense electrolyte and porous electrode. This decrease in ASR is believed to be a result of contact at the electrolyte/cathode boundary enhancing the oxygen ion transfer to the electrolyte. An ASR of 1.0 Ω cm2 at 700 °C was measured in a symmetrical cell with this layered structure, compared to an ASR of 7.4 Ω cm2 in a cell without the compact layer. In addition, further improvements were observed by enhancing the cell current collection and it is anticipated that a symmetrical cell consisting of a layered structure with adequate current collection would lower these ASR values further
Prediction of the functional properties of ceramic materials from composition using artificial neural networks
We describe the development of artificial neural networks (ANN) for the
prediction of the properties of ceramic materials. The ceramics studied here
include polycrystalline, inorganic, non-metallic materials and are investigated
on the basis of their dielectric and ionic properties. Dielectric materials are
of interest in telecommunication applications where they are used in tuning and
filtering equipment. Ionic and mixed conductors are the subjects of a concerted
effort in the search for new materials that can be incorporated into efficient,
clean electrochemical devices of interest in energy production and greenhouse
gas reduction applications. Multi-layer perceptron ANNs are trained using the
back-propagation algorithm and utilise data obtained from the literature to
learn composition-property relationships between the inputs and outputs of the
system. The trained networks use compositional information to predict the
relative permittivity and oxygen diffusion properties of ceramic materials. The
results show that ANNs are able to produce accurate predictions of the
properties of these ceramic materials which can be used to develop materials
suitable for use in telecommunication and energy production applications
Pulmonary artery diameters, cross sectional areas and area changes measured by cine cardiovascular magnetic resonance in healthy volunteers
BACKGROUND: We measured by cine cardiovascular magnetic resonance (CMR) main and branch pulmonary artery diameters and cross sectional areas in diastole and systole in order to establish normal ranges and the effects on them of age, gender and body surface area (BSA). Documentation of normal ranges provides a reference for research and clinical investigation in the fields of congenital heart disease, pulmonary hypertension and connective tissue disorders. METHODS: We recruited 120 healthy volunteers: ten males (M) and ten females (F) in each decile between 20 and 79 years, imaging them in a 1.5 Tesla CMR system. Scout acquisitions guided the placement of steady state free precession cine acquisitions transecting the main, right and left pulmonary arteries (MPA, RPA and LPA). Cross sections were rarely quite circular. RESULTS: From all subjects, the means of the greater and lesser orthogonal diastolic diameters in mm were: MPA, 22.9 ± 2.4 (M) and 21.2 ± 2.1 (F), RPA 16.6 ± 2.8 (M) and 14.7 ± 2.2 (F), and LPA 17.3 ± 2.5 (M) and 15.9 ± 2.0 (F), p < 0.0001 between genders in each case. The diastolic diameters increased with BSA and age, and plots are provided for reference. From measurements of minimum diastolic and maximum systolic cross sectional areas, the % systolic distensions were: MPA 42.7 ± 17.2 (M) and 41.8 ± 15.7 (F), RPA 50.6 ± 16.9 (M) and 48.2 ± 14.5 (F), LPA 35.6 ± 10.1 (M) and 35.2 ± 10.3 (F), and there was a decrease in distension with age (p < 0.0001 for the MPA). CONCLUSIONS: Measurements of MPA, RPA and LPA by cine CMR are provided for reference, with documentation of their changes with age and BSA
Emotional representations of space vary as a function of peoples' affect and interoceptive sensibility
Most research on people’s representation of space has focused on spatial appraisal and navigation. But there is more to space besides navigation and assessment: people have different emotional experiences at different places, which create emotionally tinged representations of space. Little is known about the emotional representation of space and the factors that shape it. The purpose of this study was to develop a graphic methodology to study the emotional representation of space and some of the environmental features (non-natural vs. natural) and personal features (affective state and interoceptive sensibility) that modulate it. We gave participants blank maps of the region where they lived and asked them to apply shade where they had happy/sad memories, and where they wanted to go after Covid-19 lockdown. Participants also completed self-reports on affective state and interoceptive sensibility. By adapting methods for analyzing neuroimaging data, we examined shaded pixels to quantify where and how strong emotions are represented in space. The results revealed that happy memories were consistently associated with similar spatial locations. Yet, this mapping response varied as a function of participants’ affective state and interoceptive sensibility. Certain regions were associated with happier memories in participants whose affective state was more positive and interoceptive sensibility was higher. The maps of happy memories, desired locations to visit after lockdown, and regions where participants recalled happier memories as a function of positive affect and interoceptive sensibility overlayed significantly with natural environments. These results suggest that people’s emotional representations of their environment are shaped by the naturalness of places, and by their affective state and interoceptive sensibility
Can the British Heart Foundation PocketCPR Application Improve the Performance of Chest Compressions During Bystander Resuscitation: a Randomised Crossover Manikin Study
This study aims to determine whether the British Heart Foundation (BHF) PocketCPR application can improve the depth and rate of chest compression, and therefore be confidently recommended for bystander use.
118 candidates were recruited into a randomised crossover manikin trial. Each candidate performed CPR for two-minutes without instruction, or performed chest compressions using the PocketCPR application. Candidates then performed a further two minutes of CPR within the opposite arm.
The number of chest compressions performed improved when PocketCPR was used compared to chest compressions when it was not (44.28% v40.57, P<0.001). The number of chest compressions performed to the required depth was higher in the PocketCPR group (90.86 v 66.26).
The BHF PocketCPR application improved the percentage of chest compressions that were performed to the required depth. Despite this, more work is required in order to develop a feedback device that can improve bystander CPR without creating delay
- …