10 research outputs found

    The dynamics of the 3D radial NLS with the combined terms

    Full text link
    In this paper, we show the scattering and blow-up result of the radial solution with the energy below the threshold for the nonlinear Schr\"{o}dinger equation (NLS) with the combined terms iu_t + \Delta u = -|u|^4u + |u|^2u \tag{CNLS} in the energy space H1(R3)H^1(\R^3). The threshold is given by the ground state WW for the energy-critical NLS: iut+Δu=−∣u∣4uiu_t + \Delta u = -|u|^4u. This problem was proposed by Tao, Visan and Zhang in \cite{TaoVZ:NLS:combined}. The main difficulty is the lack of the scaling invariance. Illuminated by \cite{IbrMN:f:NLKG}, we need give the new radial profile decomposition with the scaling parameter, then apply it into the scattering theory. Our result shows that the defocusing, H˙1\dot H^1-subcritical perturbation ∣u∣2u|u|^2u does not affect the determination of the threshold of the scattering solution of (CNLS) in the energy space.Comment: 46page

    On the 2d Zakharov system with L^2 Schr\"odinger data

    Full text link
    We prove local in time well-posedness for the Zakharov system in two space dimensions with large initial data in L^2 x H^{-1/2} x H^{-3/2}. This is the space of optimal regularity in the sense that the data-to-solution map fails to be smooth at the origin for any rougher pair of spaces in the L^2-based Sobolev scale. Moreover, it is a natural space for the Cauchy problem in view of the subsonic limit equation, namely the focusing cubic nonlinear Schroedinger equation. The existence time we obtain depends only upon the corresponding norms of the initial data - a result which is false for the cubic nonlinear Schroedinger equation in dimension two - and it is optimal because Glangetas-Merle's solutions blow up at that time.Comment: 30 pages, 2 figures. Minor revision. Title has been change
    corecore