432 research outputs found

    Nutrition and hydration implications for trained athletes

    Get PDF
    Lifestyle choices threaten to compromise health and performance of trained athletes. This thesis presents a series of studies which broadly investigated the impact of nutritional and physical challenges to human health and performance. The potential causes and effects of fluid imbalances on physical health, immune function and athletic performance were investigated. Certain populations experience chronic low-level hypohydration and athletes often fail to rehydrate sufficiently between exercise sessions. The long-term implications of hypohydration are not fully understood, but are suggested to be associated with chronic disease. In this thesis, maintenance of fluid balance was observed in healthy males, despite a caffeine intervention thought to cause diuresis. Furthermore, when mild hypohydration was induced by 24-h fluid restriction, there was little impact on mucosal immunity during endurance exercise compared with euhydration. The impact of intensified training (IT) on the physical, mental, hormonal and immunological status of well-trained athletes was investigated. A performance-specific nutritional intervention was implemented to investigate the effects of nutrient availability during prolonged exercise training sessions. Phases of IT are a regular feature of a periodised training programme. However, an imbalance between training and recovery can have significant implications for long-term athletic performance and general wellbeing. Changes in neuroendocrine, neurobiological and mucosal immune function were observed during IT and some potential markers of overreaching and were identified. Further research is required before practical application of these markers can be used effectively in the field. A relatively short period of IT resulted in significant disruptions to mood state and sleep quality. Minor changes in exercise performance were observed. Markers of overreaching were highly individual, as were responses to training

    Crossover from Single-Ion to Coherent Non-Fermi Liquid Behavior in Ce1x_{1-x}Lax_xNi9_9Ge4_4

    Full text link
    We report specific heat and magneto-resistance studies on the compound Ce1x{}_{1-x}Lax{}_xNi9{}_9Ge4{}_4 for various concentrations over the entire stoichiometric range. Our data reveal single-ion scaling with Ce-concentration between x=0.1x = 0.1 and 0.95. Furthermore, CeNi9{}_9Ge4{}_4 turns out to have the largest ever recorded value of the electronic specific heat Δc/T\Delta c/T \approx 5.5 J K2mol1\rm K^{-2}mol^{-1} at T=0.08T=0.08 K which was found in Cerium f-electron lattice systems. In the doped samples Δc/T\Delta c/T increases logarithmically in the temperature range between 3 K and 50 mK typical for non-Fermi liquid (nFl) behavior, while ρ\rho exhibits a Kondo-like minimum around 30 K, followed by a single-ion local nFl behavior. In contrast to this, CeNi9{}_9Ge4{}_4 flattens out in Δc/T\Delta c/T below 300 mK and displays a pronounced maximum in the resistivity curve at 1.5 K indicating a coherent heavy fermion groundstate. These properties render the compound Ce1x{}_{1-x}Lax{}_xNi9{}_9Ge4{}_4 a unique system on the borderline between Fermi liquid and nFl physics.Comment: 2 pages, 3 figures, SCES0

    Influence of hydration status on changes in plasma cortisol, leukocytes and antigen-stimulated cytokine production by whole blood culture following prolonged exercise.

    Get PDF
    Elevated antigen-stimulated anti-inflammatory cytokine production appears to be a risk factor for upper respiratory tract illness in athletes. The purpose of this study was to determine the effects of prolonged exercise and hydration on antigen-stimulated cytokine production. Twelve healthy males cycled for 120min at 60% O2 max on two occasions, either euhydrated or moderately hypohydrated (induced by fluid restriction for 24 h). Blood samples were collected before and after exercise and following 2 h recovery for determination of cell counts, plasma cortisol, and in vitro antigen-stimulated cytokine production by whole blood culture. Fluid restriction resulted in mean body mass loss of 1.3% and 3.9% before and after exercise, respectively. Exercise elicited a significant leukocytosis and elevated plasma cortisol, with no differences between trials. IL-6 production was significantly reduced 2 h postexercise ( < 0.05), while IL-10 production was elevated postexercise ( < 0.05). IFN- and IL-2 production tended to decrease postexercise. No significant effect of hydration status was observed for the measured variables. Prolonged exercise appears to result in augmented anti-inflammatory cytokine release in response to antigen challenge, possibly coupled with acute suppression of proinflammatory cytokine production, corresponding with studies using mitogen or endotoxin as stimulant. Moderate hypohydration does not appear to influence these changes

    The influence of hydration status during prolonged endurance exercise on salivary antimicrobial proteins

    Get PDF
    Purpose: Antimicrobial proteins (AMPs) in saliva including secretory immunoglobulin A (SIgA), lactoferrin (SLac) and lysozyme (SLys) are important in host defence against oral and respiratory infections. This study investigated the effects of hydration status on saliva AMP responses to endurance exercise. Methods: Using a randomized design, 10 healthy male participants (age 23 ± 4 years, (Formula presented.) 56.8 ± 6.5 ml/kg/min) completed 2 h cycling at 60 % (Formula presented.) in states of euhydration (EH) or dehydration (DH) induced by 24 h fluid restriction. Unstimulated saliva samples were collected before, during, immediately post-exercise and each hour for 3 h recovery. Results: Fluid restriction resulted in a 1.5 ± 0.5 % loss of body mass from baseline and a 4.3 ± 0.7 % loss immediately post-exercise. Pre-exercise urine osmolality was higher in DH than EH and overall, saliva flow rate was reduced in DH compared with EH (p < 0.05). Baseline SIgA secretion rates were not different between conditions; however, exercise induced a significant increase in SIgA concentration in DH (161 ± 134 to 309 ± 271 mg/L) which remained elevated throughout 3 h recovery. SLac secretion rates increased from pre- to post-exercise in both conditions which remained elevated in DH only. Overall, SLac concentrations were higher in DH than EH. Pre-exercise SLys concentrations were lower in DH compared with EH (1.6 ± 2.0 vs. 5.5 ± 6.7 mg/L). Post-exercise SLys concentrations remained elevated in DH but returned to pre-exercise levels by 1 h post-exercise in EH. Conclusions: Exercise in DH caused a reduction in saliva flow rate yet induced greater secretion rates of SLac and higher concentrations of SIgA and SLys. Thus, DH does not impair saliva AMP responses to endurance exercise

    Unusual Single-Ion Non-Fermi Liquid Behavior in Ce_(1-x)La_xNi_9Ge_4

    Full text link
    We report on specific heat, magnetic susceptibility and resistivity measurements on the compound Ce_(1-x)La_xNi_9Ge_4 for various concentrations ranging from the stoichiometric system with x=0 to the dilute limit x=0.95. Our data reveal single-ion scaling with the Ce-concentration and the largest ever recorded value of the electronic specific heat c/T approximately 5.5 J K^(-2)mol^(-1) at T=0.08K for the stoichiometric compound x=0 without any trace of magnetic order. While in the doped samples c/T increases logarithmically below 3K down to 50mK, their magnetic susceptibility behaves Fermi liquid like below 1K. These properties make the compound Ce_(1-x)La_xNi_9Ge_4 a unique system on the borderline between Fermi liquid and non-Fermi liquid physics.Comment: 4 pages, 5 figures; v2 contains additional resisitivity measurements; final version to appear in Phys. Rev. Let

    The impact of intensified training with a high or moderate carbohydrate feeding strategy on resting and exercise-induced oxidative stress

    Get PDF
    The impact of intensified training with a high or moderate carbohydrate feeding strategy on resting and exercise-induced oxidative stres
    corecore