37 research outputs found

    Conservation physiology across scales: Insights from the marine realm

    Get PDF
    As the field of conservation physiology develops and becomes increasingly integrated with ecolog

    Understanding the individual to implement the ecosystem approach to fisheries management

    Get PDF
    Ecosystem-based approaches to fisheries management (EAFMs) have emerged as requisite for sustainable use of fisheries resources. At the same time, however, there is a growing recognition of the degree of variation among individuals within a population, as well as the ecological consequences of this variation. Managing resources at an ecosystem level calls on practitioners to consider evolutionary processes, and ample evidence from the realm of fisheries science indicates that anthropogenic disturbance can drive changes in predominant character traits (e.g. size at maturity). Eco-evolutionary theory suggests that human-induced trait change and the modification of selective regimens might contribute to ecosystem dynamics at a similar magnitude to species extirpation, extinction and ecological dysfunction. Given the dynamic interaction between fisheries and target species via harvest and subsequent ecosystem consequences, we argue that individual diversity in genetic, physiological and behavioural traits are important considerations under EAFMs. Here, we examine the role of individual variation in a number of contexts relevant to fisheries management, including the potential ecological effects of rapid trait change. Using select examples, we highlight the extent of phenotypic diversity of individuals, as well as the ecological constraints on such diversity. We conclude that individual phenotypic diversity is a complex phenomenon that needs to be considered in EAFMs, with the ultimate realization that maintaining or increasing individual trait diversity may afford not only species, but also entire ecosystems, with enhanced resilience to environmental perturbations. Put simply, individuals are the foundation from which population- and ecosystem-level traits emerge and are therefore of central importance for the ecosystem-based approaches to fisheries management

    The influence of environmental temperature and oxygen concentration on the recovery of largemouth bass from exercise: implications for live-release angling tournaments

    No full text
    The impact of variation in water temperature and dissolved oxygen on recovery of largemouth bass Micropterus salmoides from exercise was examined. For this, largemouth bass were first exercised and recovered for either 1, 2 or 4 h at ambient water temperatures (25° C) in fully oxygenated water. Results showed that exercise forced fish to utilize anaerobic metabolism to meet energy demands, and resulted in reductions in anaerobic energy stores adenosine triphosphate (ATP), Phosphocreatine (PCr) and glycogen. Exercise also resulted in a seven-fold increase in lactate within white muscle. After 2 h of recovery in oxygenated water at acclimation temperature, physiological recovery from exercise was under way, and by 4 h most variables examined had returned to control levels. Next, largemouth bass were exercised at ambient temperatures and recovered for 2 h in environments with either elevated temperature (32° C), reduced temperature (14 and 20° C), hypoxia or hyperoxia. Both elevated and reduced temperature impaired recovery of tissue lactate and tissue ATP relative to fish recovered in water at acclimation temperature, while hyperoxic water impaired recovery of tissue ATP. Moderately hypoxic waters impaired the recovery of plasma glucose, plasma lactate and tissue PCr relative to fish recovered in fully oxygenated water. Results from this study are discussed in the context of critical oxygen and temperature guidelines for largemouth bass. In addition, several recommendations are made concerning remedial treatments used in livewells (tanks) during angling tournaments when fish are recovering from exercise associated with angling

    Sub-lethal ammonia toxicity in largemouth bass

    No full text
    Guidelines for ammonia toxicity in fish are often determined using static exposure tests with immature fish over a 96-h period. These results may not be relevant to aquaculture, hauling or angling tournament scenarios where mature fish can be exposed to ammonia for shorter durations, often following additional stressors such as handling. The current study sought to quantify (1) the impact of ambient ammonia on the ability of largemouth bass to recover from exercise, (2) the behavioural response of largemouth bass to elevated ambient ammonia and (3) the concentration of ammonia that can accumulate in a live-release vessel at an angling tournament. After approximately 3 h, total ammonia (Tamm) concentrations in a live-release vessel at an angling tournament were almost 200 μM. Exposure of fish to 1000 μM Tamm (a value approximately 80% below the criteria maximum concentration for largemouth bass) caused significant reductions in ventilation rates, and increases in erratic swimming and irregular ventilation. Exposure to 100 μM Tamm impaired the ability of largemouth bass to recover from exercise relative to fish recovering in fresh water. Therefore, sub-lethal ambient ammonia concentrations cause physiological disturbances that can impair the recovery of largemouth bass from exercise

    Timing of Puberty and the Onset of Psychiatric Symptoms

    No full text

    Racialisation and the cultural politics of advertising

    No full text
    SIGLEAvailable from British Library Document Supply Centre-DSC:DXN023596 / BLDSC - British Library Document Supply CentreGBUnited Kingdo
    corecore