2,072 research outputs found
SDSS J163030.58+423305.8: A 40 minute Orbital Period Detached White Dwarf Binary
We report the discovery of a new detached, double white dwarf system with an
orbital period of 39.8 min. We targeted SDSS J163030.58+423305.8 (hereafter
J1630) as part of our radial velocity program to search for companions around
low-mass white dwarfs using the 6.5m MMT. We detect peak-to-peak radial
velocity variations of 576 km/s. The mass function and optical photometry rule
out main-sequence companions. In addition, no milli-second pulsar companions
are detected in radio observations. Thus the invisible companion is most likely
another white dwarf. Unlike the other 39 min binary SDSS J010657.39-100003.3,
follow-up high speed photometric observations of J1630 obtained at the McDonald
2.1m telescope do not show significant ellipsoidal variations, indicating a
higher primary mass and smaller radius. The absence of eclipses constrain the
inclination angle to <82deg. J1630 contains a pair of white dwarfs, 0.3 Msun
primary + >0.3 Msun invisible secondary, at a separation of >0.32 Rsun. The two
white dwarfs will merge in less than 31 Myr. Depending on the core composition
of the companion, the merger will form either a single core-He burning subdwarf
star or a rapidly rotating massive white dwarf. The gravitational wave strain
from J1630 is detectable by instruments like the Laser Interferometer Space
Antenna (LISA) within the first year of operation.Comment: MNRAS Letters, in pres
A Detailed Model Atmosphere Analysis of Cool White Dwarfs in the Sloan Digital Sky Survey
We present optical spectroscopy and near-infrared photometry of 126 cool
white dwarfs in the Sloan Digital Sky Survey (SDSS). Our sample includes high
proper motion targets selected using the SDSS and USNO-B astrometry and a dozen
previously known ultracool white dwarf candidates. Our optical spectroscopic
observations demonstrate that a clean selection of large samples of cool white
dwarfs in the SDSS (and the SkyMapper, Pan-STARRS, and the Large Synoptic
Survey Telescope datasets) is possible using a reduced proper motion diagram
and a tangential velocity cut-off (depending on the proper motion accuracy) of
30 km/s. Our near-infrared observations reveal eight new stars with significant
absorption. We use the optical and near-infrared photometry to perform a
detailed model atmosphere analysis. More than 80% of the stars in our sample
are consistent with either pure hydrogen or pure helium atmospheres. However,
the eight stars with significant infrared absorption and the majority of the
previously known ultracool white dwarf candidates are best explained with mixed
hydrogen and helium atmosphere models. The age distribution of our sample is
consistent with a Galactic disk age of 8 Gyr. A few ultracool white dwarfs may
be as old as 12-13 Gyr, but our models have problems matching the spectral
energy distributions of these objects. There are only two halo white dwarf
candidates in our sample. However, trigonometric parallax observations are
required for accurate mass and age determinations and to confirm their
membership in the halo.Comment: ApJ Supplements, in pres
The Discovery of a Debris Disk Around the DAV White Dwarf PG 1541+651
To search for circumstellar disks around evolved stars, we targeted roughly
100 DA white dwarfs from the Palomar Green survey with the Peters Automated
Infrared Imaging Telescope (PAIRITEL). Here we report the discovery of a debris
disk around one of these targets, the pulsating white dwarf PG 1541+651 (KX
Draconis, hereafter PG1541). We detect a significant flux excess around PG1541
in the K-band. Follow-up near-infrared spectroscopic observations obtained at
the NASA Infrared Telescope Facility (IRTF) and photometric observations with
the warm Spitzer Space Telescope confirm the presence of a warm debris disk
within 0.13-0.36 Rsun (11-32x the stellar radius) at an inclination angle of
60deg. At Teff = 11880 K, PG1541 is almost a twin of the DAV white dwarf
G29-38, which also hosts a debris disk. All previously known dusty white dwarfs
are of the DAZ/DBZ spectral type due to accretion of metals from the disk.
High-resolution optical spectroscopy is needed to search for metal absorption
lines in PG1541 and to constrain the accretion rate from the disk. PG1541 is
only 55 pc away from the Sun and the discovery of its disk in our survey
demonstrates that our knowledge of the nearby dusty white dwarf population is
far from complete.Comment: MNRAS Letters, in pres
The Discovery of the Most Metal-Rich White Dwarf: Composition of a Tidally Disrupted Extrasolar Dwarf Planet
Cool white dwarf stars are usually found to have an outer atmosphere that is
practically pure in hydrogen or helium. However, a small fraction have traces
of heavy elements that must originate from the accretion of extrinsic material,
most probably circumstellar matter. Upon examining thousands of Sloan Digital
Sky Survey spectra, we discovered that the helium-atmosphere white dwarf SDSS
J073842.56+183509.6 shows the most severe metal pollution ever seen in the
outermost layers of such stars. We present here a quantitative analysis of this
exciting star by combining high S/N follow-up spectroscopic and photometric
observations with model atmospheres and evolutionary models. We determine the
global structural properties of our target star, as well as the abundances of
the most significant pollutants in its atmosphere, i.e., H, O, Na, Mg, Si, Ca,
and Fe. The relative abundances of these elements imply that the source of the
accreted material has a composition similar to that of Bulk Earth. We also
report the signature of a circumstellar disk revealed through a large infrared
excess in JHK photometry. Combined with our inferred estimate of the mass of
the accreted material, this strongly suggests that we are witnessing the
remains of a tidally disrupted extrasolar body that was as large as Ceres.Comment: 7 pages in emulateapj, 5 figures, accepted for publication in Ap
First Results from Pan-STARRS1: Faint, High Proper Motion White Dwarfs in the Medium-Deep Fields
The Pan-STARRS1 survey has obtained multi-epoch imaging in five bands
(Pan-STARRS1 gps, rps, ips, zps, and yps) on twelve "Medium Deep Fields", each
of which spans a 3.3 degree circle. For the period between Apr 2009 and Apr
2011 these fields were observed 50-200 times. Using a reduced proper motion
diagram, we have extracted a list of 47 white dwarf (WD) candidates whose
Pan-STARRS1 astrometry indicates a non-zero proper motion at the 6-sigma level,
with a typical 1-sigma proper motion uncertainty of 10 mas/yr. We also used
astrometry from SDSS (when available) and USNO-B to assess our proper motion
fits. None of the WD candidates exhibits evidence of statistically significant
parallaxes, with a typical 1-sigma uncertainty of 8 mas. Twelve of these
candidates are known WDs, including the high proper motion (1.7"/yr) WD LHS
291. We confirm three more objects as WDs through optical spectroscopy. Based
on the Pan-STARRS1 colors, ten of the stars are likely to be cool WDs with 4170
K Teff 5000 K and cooling ages <9 Gyr. We classify these objects as likely
thick disk WDs based on their kinematics. Our current sample represents only a
small fraction of the Pan-STARRS1 data. With continued coverage from the Medium
Deep Field Survey and the 3pi survey, Pan-STARRS1 should find many more high
proper motion WDs that are part of the old thick disk and halo.Comment: 33 pages, 8 figures, submitted to Ap
Simultaneous use of Individual and Joint Regularization Terms in Compressive Sensing: Joint Reconstruction of Multi-Channel Multi-Contrast MRI Acquisitions
Purpose: A time-efficient strategy to acquire high-quality multi-contrast
images is to reconstruct undersampled data with joint regularization terms that
leverage common information across contrasts. However, these terms can cause
leakage of uncommon features among contrasts, compromising diagnostic utility.
The goal of this study is to develop a compressive sensing method for
multi-channel multi-contrast magnetic resonance imaging (MRI) that optimally
utilizes shared information while preventing feature leakage.
Theory: Joint regularization terms group sparsity and colour total variation
are used to exploit common features across images while individual sparsity and
total variation are also used to prevent leakage of distinct features across
contrasts. The multi-channel multi-contrast reconstruction problem is solved
via a fast algorithm based on Alternating Direction Method of Multipliers.
Methods: The proposed method is compared against using only individual and
only joint regularization terms in reconstruction. Comparisons were performed
on single-channel simulated and multi-channel in-vivo datasets in terms of
reconstruction quality and neuroradiologist reader scores.
Results: The proposed method demonstrates rapid convergence and improved
image quality for both simulated and in-vivo datasets. Furthermore, while
reconstructions that solely use joint regularization terms are prone to
leakage-of-features, the proposed method reliably avoids leakage via
simultaneous use of joint and individual terms.
Conclusion: The proposed compressive sensing method performs fast
reconstruction of multi-channel multi-contrast MRI data with improved image
quality. It offers reliability against feature leakage in joint
reconstructions, thereby holding great promise for clinical use.Comment: 13 pages, 13 figures. Submitted for possible publicatio
The Shortest Period Detached Binary White Dwarf System
We identify SDSS J010657.39-100003.3 (hereafter J0106-1000) as the shortest
period detached binary white dwarf (WD) system currently known. We targeted
J0106-1000 as part of our radial velocity program to search for companions
around known extremely low-mass (ELM, ~ 0.2 Msol) WDs using the 6.5m MMT. We
detect peak-to-peak radial velocity variations of 740 km/s with an orbital
period of 39.1 min. The mass function and optical photometry rule out a
main-sequence star companion. Follow-up high-speed photometric observations
obtained at the McDonald 2.1m telescope reveal ellipsoidal variations from the
distorted primary but no eclipses. This is the first example of a tidally
distorted WD. Modeling the lightcurve, we constrain the inclination angle of
the system to be 67 +- 13 deg. J0106-1000 contains a pair of WDs (0.17 Msol
primary + 0.43 Msol invisible secondary) at a separation of 0.32 Rsol. The two
WDs will merge in 37 Myr and most likely form a core He-burning single subdwarf
star. J0106-1000 is the shortest timescale merger system currently known. The
gravitational wave strain from J0106-1000 is at the detection limit of the
Laser Interferometer Space Antenna (LISA). However, accurate ephemeris and
orbital period measurements may enable LISA to detect J0106-1000 above the
Galactic background noise.Comment: MNRAS Letters, in pres
- …