64 research outputs found
Zinc layered hydroxide salts: intercalation and incorporation into low-density polyethylene
In this study, polymer composites using low-density polyethylene (LDPE) and layered hydroxide salts (LHS) were synthesized. The following compositions of LHS were obtained Zn5(OH)8(An-)2/n.yH2O, where A was varied in order to obtain hydrophilic (A = NO3 -) or hydrophobic (A = DDS- – dodecyl sulfate or DBS- – dodecyl benzene sulfonate). Synthesis was carried out by co-precipitation in alkaline medium and drying, being followed by characterization via Fourier-transform infrared spectroscopy, thermogravimetric analysis, X-ray diffraction and scanning electron microscopy. A variable amount of filler was then incorporated into the LDPE via extrusion, which was then injection molded to obtain specimens for evaluating tensile properties (Young’s modulus, tensile strength, strain at break and toughness). For comparison, the sodium salts of the surfactants (NaDDS and NaDBS) were also used as fillers in LDPE. The X-ray diffraction results indicated that the hydrophobic LHS were exfoliated in the polymer matrix, whereas the hydrophilic LHS was only delaminated. In the LDPE composites, melting and crystallization temperatures were nearly constant, along with the crystallinity indexes. The mechanical properties were mainly varied when the organophilic LHS was used. Overall, fillers based on LHS, especially those containing hydrophobic anions, may be interesting alternatives in the production of reinforced thermoplastics
Polyurethane composite adsorbent using solid phase extraction method for preconcentration of metal ion from aqueous solution
Polyurethane composite adsorbent polymeric material was prepared and investigated for selected solid-phase extraction for metal ions, prior to its determination by inductively coupled plasma optical emission spectrometry. The surface characterisation was done using Fourier transform infrared spectroscopy. The separation and preconcentration conditions of the analytes investigated includes influence of pH, sample loading flow rate, elution flow rate, type and concentration of eluents. The optimum pH for the highest efficient recoveries for all metal ions, which ranged from 70 to 85 %, is pH 7. The metal ions were quantitatively eluted with 5 mL of 2 mol/L HNO3. Common coexisting ions did not interfere with the separation. The percentage recovery of the metal ions ranged between 70 and 89 %, while the results for the limit of detection and limit of quantification ranged from 0.249 to 0.256 and 0.831 to 0.855, respectively. The experimental tests showed good preconcentration results of trace levels of metal ions using synthesised polyurethane polymer adsorbent composite
- …