331 research outputs found

    Spin diffusion and injection in semiconductor structures: Electric field effects

    Full text link
    In semiconductor spintronic devices, the semiconductor is usually lightly doped and nondegenerate, and moderate electric fields can dominate the carrier motion. We recently derived a drift-diffusion equation for spin polarization in the semiconductors by consistently taking into account electric-field effects and nondegenerate electron statistics and identified a high-field diffusive regime which has no analogue in metals. Here spin injection from a ferromagnet (FM) into a nonmagnetic semiconductor (NS) is extensively studied by applying this spin drift-diffusion equation to several typical injection structures such as FM/NS, FM/NS/FM, and FM/NS/NS structures. We find that in the high-field regime spin injection from a ferromagnet into a semiconductor is enhanced by several orders of magnitude. For injection structures with interfacial barriers, the electric field further enhances spin injection considerably. In FM/NS/FM structures high electric fields destroy the symmetry between the two magnets at low fields, where both magnets are equally important for spin injection, and spin injection becomes locally determined by the magnet from which carriers flow into the semiconductor. The field-induced spin injection enhancement should also be insensitive to the presence of a highly doped nonmagnetic semiconductor (NS+^+) at the FM interface, thus FM/NS+^+/NS structures should also manifest efficient spin injection at high fields. Furthermore, high fields substantially reduce the magnetoresistance observable in a recent experiment on spin injection from magnetic semiconductors

    UV friendly T-parity in the SU(6)/Sp(6) little Higgs model

    Full text link
    Electroweak precision tests put stringent constraints on the parameter space of little Higgs models. Tree-level exchange of TeV scale particles in a generic little Higgs model produce higher dimensional operators that make contributions to electroweak observables that are typically too large. To avoid this problem a discrete symmetry dubbed T-parity can be introduced to forbid the dangerous couplings. However, it was realized that in simple group models such as the littlest Higgs model, the implementation of T-parity in a UV completion could present some challenges. The situation is analogous to the one in QCD where the pion can easily be defined as being odd under a new Z2Z_2 symmetry in the chiral Lagrangian, but this Z2Z_2 is not a symmetry of the quark Lagrangian. In this paper we examine the possibility of implementing a T-parity in the low energy SU(6)/Sp(6)SU(6)/Sp(6) model that might be easier to realize in the UV. In our model, the T-parity acts on the low energy non-linear sigma model field in way which is different to what was originally proposed for the Littlest Higgs, and lead to a different low energy theory. In particular, the Higgs sector of this model is a inert two Higgs doublets model with an approximate custodial symmetry. We examine the contributions of the various sectors of the model to electroweak precision data, and to the dark matter abundance.Comment: 21 pages,4 figures. Clarifications added, typos corrected and references added. Published in JHE

    The evolution of rotating stars

    Full text link
    First, we review the main physical effects to be considered in the building of evolutionary models of rotating stars on the Upper Main-Sequence (MS). The internal rotation law evolves as a result of contraction and expansion, meridional circulation, diffusion processes and mass loss. In turn, differential rotation and mixing exert a feedback on circulation and diffusion, so that a consistent treatment is necessary. We review recent results on the evolution of internal rotation and the surface rotational velocities for stars on the Upper MS, for red giants, supergiants and W-R stars. A fast rotation is enhancing the mass loss by stellar winds and reciprocally high mass loss is removing a lot of angular momentum. The problem of the ``break-up'' or Ω\Omega-limit is critically examined in connection with the origin of Be and LBV stars. The effects of rotation on the tracks in the HR diagram, the lifetimes, the isochrones, the blue to red supergiant ratios, the formation of W-R stars, the chemical abundances in massive stars as well as in red giants and AGB stars, are reviewed in relation to recent observations for stars in the Galaxy and Magellanic Clouds. The effects of rotation on the final stages and on the chemical yields are examined, as well as the constraints placed by the periods of pulsars. On the whole, this review points out that stellar evolution is not only a function of mass M and metallicity Z, but of angular velocity Ω\Omega as well.Comment: 78 pages, 7 figures, review for Annual Review of Astronomy and Astrophysics, vol. 38 (2000

    Nets, Spray or Both? The Effectiveness of Insecticide-Treated Nets and Indoor Residual Spraying in Reducing Malaria Morbidity and Child Mortality in sub-Saharan Africa.

    Get PDF
    Malaria control programmes currently face the challenge of maintaining, as well as accelerating, the progress made against malaria with fewer resources and uncertain funding. There is a critical need to determine what combination of malaria interventions confers the greatest protection against malaria morbidity and child mortality under routine conditions. This study assesses intervention effectiveness experienced by children under the age of five exposed to both insecticide-treated nets (ITNs) and indoor residual spraying (IRS), as compared to each intervention alone, based on nationally representative survey data collected from 17 countries in sub-Saharan Africa. Living in households with both ITNs and IRS was associated with a significant risk reduction against parasitaemia in medium and high transmission areas, 53% (95% CI 37% to 67%) and 31% (95% CI 11% to 47%) respectively. For medium transmission areas, an additional 36% (95% CI 7% to 53%) protection was garnered by having both interventions compared with exposure to only ITNs or only IRS. Having both ITNs and IRS was not significantly more protective against parasitaemia than either intervention alone in low and high malaria transmission areas. In rural and urban areas, exposure to both interventions provided significant protection against parasitaemia, 57% (95% CI 48% to 65%) and 39% (95% CI 10% to 61%) respectively; however, this effect was not significantly greater than having a singular intervention. Statistically, risk for all-cause child mortality was not significantly reduced by having both ITNs and IRS, and no additional protectiveness was detected for having dual intervention coverage over a singular intervention. These findings suggest that greater reductions in malaria morbidity and health gains for children may be achieved with ITNs and IRS combined beyond the protection offered by IRS or ITNs alone

    Quantum impurity dynamics in two-dimensional antiferromagnets and superconductors

    Full text link
    We present the universal theory of arbitrary, localized impurities in a confining paramagnetic state of two-dimensional antiferromagnets with global SU(2) spin symmetry. The energy gap of the host antiferromagnet to spin-1 excitations, \Delta, is assumed to be significantly smaller than a typical nearest neighbor exchange. In the absence of impurities, it was argued in earlier work (Chubukov et al. cond-mat/9304046) that the low-temperature quantum dynamics is universally and completely determined by the values of \Delta and a spin-wave velocity c. Here we establish the remarkable fact that no additional parameters are necessary for an antiferromagnet with a dilute concentration of impurities, n_{imp} - each impurity is completely characterized by a integer/half-odd-integer valued spin, S, which measures the net uncompensated Berry phase due to spin precession in its vicinity. We compute the impurity-induced damping of the spin-1 collective mode of the antiferromagnet: the damping occurs on an energy scale \Gamma= n_{imp} (\hbar c)^2/\Delta, and we predict a universal, asymmetric lineshape for the collective mode peak. We argue that, under suitable conditions, our results apply unchanged (or in some cases, with minor modifications) to d-wave superconductors, and compare them to recent neutron scattering experiments on YBCO by Fong et al. (cond-mat/9812047). We also describe the universal evolution of numerous measurable correlations as the host antiferromagnet undergoes a quantum phase transition to a Neel ordered state.Comment: 36 pages, 12 figures; added reference

    Variation in herbivore space use: comparing two savanna ecosystems with different anthrax outbreak patterns in southern Africa

    Get PDF
    Abstract Background The distribution of resources can affect animal range sizes, which in turn may alter infectious disease dynamics in heterogenous environments. The risk of pathogen exposure or the spatial extent of outbreaks may vary with host range size. This study examined the range sizes of herbivorous anthrax host species in two ecosystems and relationships between spatial movement behavior and patterns of disease outbreaks for a multi-host environmentally transmitted pathogen. Methods We examined range sizes for seven host species and the spatial extent of anthrax outbreaks in Etosha National Park, Namibia and Kruger National Park, South Africa, where the main host species and outbreak sizes differ. We evaluated host range sizes using the local convex hull method at different temporal scales, within-individual temporal range overlap, and relationships between ranging behavior and species contributions to anthrax cases in each park. We estimated the spatial extent of annual anthrax mortalities and evaluated whether the extent was correlated with case numbers of a given host species. Results Range size differences among species were not linearly related to anthrax case numbers. In Kruger the main host species had small range sizes and high range overlap, which may heighten exposure when outbreaks occur within their ranges. However, different patterns were observed in Etosha, where the main host species had large range sizes and relatively little overlap. The spatial extent of anthrax mortalities was similar between parks but less variable in Etosha than Kruger. In Kruger outbreaks varied from small local clusters to large areas and the spatial extent correlated with case numbers and species affected. Secondary host species contributed relatively few cases to outbreaks; however, for these species with large range sizes, case numbers positively correlated with outbreak extent. Conclusions Our results provide new information on the spatiotemporal structuring of ranging movements of anthrax host species in two ecosystems. The results linking anthrax dynamics to host space use are correlative, yet suggest that, though partial and proximate, host range size and overlap may be contributing factors in outbreak characteristics for environmentally transmitted pathogens

    Electroweak Symmetry Breaking at the LHC

    Full text link
    One of the major goals of the Large Hadron Collider is to probe the electroweak symmetry breaking mechanism and the generation of the masses of the elementary particles. We review the physics of the Higgs sector in the Standard Model and some of its extensions such as supersymmetric theories and models of extra dimensions. The prospects for discovering the Higgs particles at the LHC and the study of their fundamental properties are summarised.Comment: 27 pages, 45 figures, uses LaTeX (insa.sty). Invited review for volume on LHC physics to celebrate the Platinum Jubilee of the Indian National Science Academy, edited by Amitava Datta, Biswarup Mukhopadhyaya and Amitava Raychaudhuri. Expanded the acronym in the title in the annoncement. No other change in the text or reference

    The Higgs resonance in vector boson scattering

    Get PDF
    A heavy Higgs resonance is described in a representation-independent way which is valid for the whole energy range of 2 -> 2 scattering processes, including the asymptotic behavior at low and high energies. The low-energy theorems which follow from to the custodial SU_2 symmetry of the Higgs sector restrict the possible parameterizations of the lineshape that are consistent in perturbation theory. Matching conditions are specified which are necessary and sufficient to relate the parameters arising in different expansions. The construction is performed explicitly up to next-to-leading order.Comment: 25 pages, revtex, uses epsf, amssym
    • …
    corecore