12 research outputs found

    Reperfusion Without Functional Independence in Late Presentation of Stroke With Large Vessel Occlusion.

    No full text
    Reperfusion without functional independence (RFI) is an undesired outcome following thrombectomy in acute ischemic stroke. The primary objective was to evaluate, in patients presenting with proximal anterior circulation occlusion stroke in the extended time window, whether selection with computed tomography (CT) perfusion or magnetic resonance imaging is associated with RFI, mortality, or symptomatic intracranial hemorrhage (sICH) compared with noncontrast CT selected patients. The CLEAR study (CT for Late Endovascular Reperfusion) was a multicenter, retrospective cohort study of stroke patients undergoing thrombectomy in the extended time window. Inclusion criteria for this analysis were baseline National Institutes of Health Stroke Scale score ≥6, internal carotid artery, M1 or M2 segment occlusion, prestroke modified Rankin Scale score of 0 to 2, time-last-seen-well to treatment 6 to 24 hours, and successful reperfusion (modified Thrombolysis in Cerebral Infarction 2c-3). Of 2304 patients in the CLEAR study, 715 patients met inclusion criteria. Of these, 364 patients (50.9%) showed RFI (ie, mRS score of 3-6 at 90 days despite successful reperfusion), 37 patients (5.2%) suffered sICH, and 127 patients (17.8%) died within 90 days. Neither imaging selection modality for thrombectomy candidacy (noncontrast CT versus CT perfusion versus magnetic resonance imaging) was associated with RFI, sICH, or mortality. Older age, higher baseline National Institutes of Health Stroke Scale, higher prestroke disability, transfer to a comprehensive stroke center, and a longer interval to puncture were associated with RFI. The presence of M2 occlusion and higher baseline Alberta Stroke Program Early CT Score were inversely associated with RFI. Hypertension was associated with sICH. RFI is a frequent phenomenon in the extended time window. Neither magnetic resonance imaging nor CT perfusion selection for mechanical thrombectomy was associated with RFI, sICH, and mortality compared to noncontrast CT selection alone. URL: https://www. gov; Unique identifier: NCT04096248

    Liver Assist Systems: State of the Art

    No full text
    peer reviewedAttempts to develop liver support systems for the treatment of patients with liver failure have ranged from use of plasma exchange to utilization of charcoal columns and extracorporeal devices loaded with liver tissue. However, no system has achieved wide clinical use and - in the absence of liver transplantation - severe hepatic failure continues to be associated with significant morbidity and mortality. In this paper, the authors review the current status of liver assist systems and summarize their clinical experience with a xenogeneic cell based-bioartificial liver

    PKC Phosphorylation Increases the Ability of AFAP-110 to Cross-link Actin Filaments

    No full text
    The actin filament-associated protein and Src-binding partner, AFAP-110, is an adaptor protein that links signaling molecules to actin filaments. AFAP-110 binds actin filaments directly and multimerizes through a leucine zipper motif. Cellular signals downstream of Src(527F) can regulate multimerization. Here, we determined recombinant AFAP-110 (rAFAP-110)-bound actin filaments cooperatively, through a lateral association. We demonstrate rAFAP-110 has the capability to cross-link actin filaments, and this ability is dependent on the integrity of the carboxy terminal actin binding domain. Deletion of the leucine zipper motif or PKC phosphorylation affected AFAP-110's conformation, which correlated with changes in multimerization and increased the capability of rAFAP-110 to cross-link actin filaments. AFAP-110 is both a substrate and binding partner of PKC. On PKC activation, stress filament organization is lost, motility structures form, and AFAP-110 colocalizes strongly with motility structures. Expression of a deletion mutant of AFAP-110 that is unable to bind PKC blocked the effect of PMA on actin filaments. We hypothesize that upon PKC activation, AFAP-110 can be cooperatively recruited to newly forming actin filaments, like those that exist in cell motility structures, and that PKC phosphorylation effects a conformational change that may enable AFAP-110 to promote actin filament cross-linking at the cell membrane

    Cytochromes, Iron-Sulfur, and Copper Proteins Mediating Electron Transfer from the Cyt bc1 Complex to Photosynthetic Reaction Center Complexes

    No full text

    Aerobic and Anaerobic Electron Transport Chains in Anoxygenic Phototrophic Bacteria

    No full text
    corecore