95 research outputs found

    Abdominal venous thrombosis presenting in myeloproliferative neoplasm with JAK2 V617F mutation: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>An unprovoked thombotic event in a patient is cause for further evaluation of an underlying hypercoaguable state. The investigation should include a thorough search, including checking for a variety of known inherited and acquired hypercoaguble states (protein C or S deficiency, anti-phospholipid antibodies, and anti-thrombin III deficiency) and gene mutations that predispose patients to an increased risk of clotting (for example, prothrombin gene 20210 mutation, factor V Leiden, and the <it>JAK2 V617F </it>mutation).</p> <p>Case presentation</p> <p>We report the case of a 38-year-old Caucasian woman with spontaneous, unprovoked abdominal venous thrombosis and demonstrate how testing for the <it>JAK2 V617F </it>mutation was useful in unmasking an underlying hypercoaguable state.</p> <p>Conclusions</p> <p><it>JAK2 V617F</it>-positive myeloproliferative neoplasm was diagnosed. This case illustrates the importance of testing for <it>JAK2 V617F </it>in patients presenting with Budd-Chiari syndrome, even in the absence of overt hematologic abnormalities, in order to establish a diagnosis of underlying myeloproliferative neoplasm.</p

    Clinical Implication of Targeting of Cancer Stem Cells

    Get PDF
    The existence of cancer stem cells (CSCs) is receiving increasing interest particularly due to its potential ability to enter clinical routine. Rapid advances in the CSC field have provided evidence for the development of more reliable anticancer therapies in the future. CSCs typically only constitute a small fraction of the total tumor burden; however, they harbor self-renewal capacity and appear to be relatively resistant to conventional therapies. Recent therapeutic approaches aim to eliminate or differentiate CSCs or to disrupt the niches in which they reside. Better understanding of the biological characteristics of CSCs as well as improved preclinical and clinical trials targeting CSCs may revolutionize the treatment of many cancers. Copyright (c) 2012 S. Karger AG, Base

    IPSS-independent prognostic value of plasma CXCL10, IL-7 and IL-6 levels in myelodysplastic syndromes

    Get PDF
    Recent studies suggest a powerful prognostic value for plasma cytokine levels in primary myelofibrosis (interleukin (IL)-2R, IL-8, IL-12, IL-15 and C–X–C motif chemokine 10 (CXCL10)) and large-cell lymphoma (IL-2R, IL-8, IL-10, IL-12, CXCL9 and CXCL10). To examine the possibility of a similar phenomenon in myelodysplastic syndromes (MDS), we used multiplex enzyme-linked immunosorbent assay to measure 30 plasma cytokines in 78 patients with primary MDS. Compared with normal controls (n=35), the levels of 19 cytokines were significantly altered. Multivariable analysis identified increased levels of CXCL10 (P<0.01), IL-7 (P=0.02) and IL-6 (P=0.07) as predictors of shortened survival; the survival association remained significant when the Cox model was adjusted for the International Prognostic Scoring System, age, transfusion-need or thrombocytopenia. MDS patients with normal plasma levels of CXCL10, IL-7 and IL-6 lived significantly longer (median survival 76 months) than those with elevated levels of at least one of the three cytokines (median survival 25 months) (P<0.01). Increased levels of IL-6 were associated with inferior leukemia-free survival, independent of other prognostic factors (P=0.01). Comparison of plasma cytokines between MDS (n=78) and primary myelofibrosis (n=127) revealed a significantly different pattern of abnormalities. These observations reinforce the concept of distinct and prognostically relevant plasma cytokine signatures in hematological malignancies

    Relevance of the JAK2V617F mutation in patients with deep vein thrombosis of the leg

    Get PDF
    Venous thromboembolism (VTE) can be the first presenting symptom in myeloproliferative neoplasms (MPN). Studies have demonstrated a high prevalence of the JAK2V617F mutation in patients with splanchnic vein thrombosis. Fewer studies have been done in patients with thrombosis outside the splanchnic area, showing a lower prevalence although the clinical relevance of the mutation in these patients, e.g., progression to overt MPN, remains unknown. The objective of this study was to determine the effect size of JAK2V617F in prospectively collected DNA samples of patients objectively diagnosed with deep vein thrombosis (DVT) of the leg and controls without DVT, with follow-up on JAK2V617F-positive patients to assess clinical relevance. Presence of JAK2V617F was determined in DNA samples from 187 patients with DVT and 201 controls, using quantitative RT-PCR. Hematological parameters were also analyzed. All initially JAK2V617F-positive patients were reassessed. Of 187 patients with DVT, 178 were analyzed for JAK2V617F, and in four (2.3%; 95% CI 0.1–4.4), JAK2V617F was present. Of 201 controls, 198 were analyzed; one was JAK2V617F positive (0.5%; 95% CI βˆ’0.5–1.5, OR 4.5; 95% CI 0.5–40.9). None had MPN features, nor upon reassessment after a median follow-up of 68.5Β months. Four JAK2V617F-positive patients with DVT and one control without DVT did not develop overt MPN after a median follow-up of nearly 6Β years. Thus, in patients with non-splanchnic venous thrombosis, JAK2V617F appears not to be clinically relevant

    Essential thrombocythemia

    Get PDF
    Essential thrombocythemia (ET) is an acquired myeloproliferative disorder (MPD) characterized by a sustained elevation of platelet number with a tendency for thrombosis and hemorrhage. The prevalence in the general population is approximately 30/100,000. The median age at diagnosis is 65 to 70 years, but the disease may occur at any age. The female to male ratio is about 2:1. The clinical picture is dominated by a predisposition to vascular occlusive events (involving the cerebrovascular, coronary and peripheral circulation) and hemorrhages. Some patients with ET are asymptomatic, others may experience vasomotor (headaches, visual disturbances, lightheadedness, atypical chest pain, distal paresthesias, erythromelalgia), thrombotic, or hemorrhagic disturbances. Arterial and venous thromboses, as well as platelet-mediated transient occlusions of the microcirculation and bleeding, represent the main risks for ET patients. Thromboses of large arteries represent a major cause of mortality associated with ET or can induce severe neurological, cardiac or peripheral artery manifestations. Acute leukemia or myelodysplasia represent only rare and frequently later-onset events. The molecular pathogenesis of ET, which leads to the overproduction of mature blood cells, is similar to that found in other clonal MPDs such as chronic myeloid leukemia, polycythemia vera and myelofibrosis with myeloid metaplasia of the spleen. Polycythemia vera, myelofibrosis with myeloid metaplasia of the spleen and ET are generally associated under the common denomination of Philadelphia (Ph)-negative MPDs. Despite the recent identification of the JAK2 V617F mutation in a subset of patients with Ph-negative MPDs, the detailed pathogenetic mechanism is still a matter of discussion. Therapeutic interventions in ET are limited to decisions concerning the introduction of anti-aggregation therapy and/or starting platelet cytoreduction. The therapeutic value of hydroxycarbamide and aspirin in high risk patients has been supported by controlled studies. Avoiding thromboreduction or opting for anagrelide to postpone the long-term side effects of hydrocarbamide in young or low risk patients represent alternative options. Life expectancy is almost normal and similar to that of a healthy population matched by age and sex

    Deactylase inhibition in myeloproliferative neoplasms

    Get PDF
    Myeloproliferative neoplasms (MPN) are clonal haemopoietic progenitor cell disorders characterized by the proliferation of one or more of the haemopoietic lineages (myeloid, erythroid and/or megakaryocytic). The MPNs include eight haematological disorders: chronic myelogenous leukemia (CML), polycythemia vera (PV), essential thrombocythemia (ET), primary myelofibrosis (PMF), systemic mastocytosis (SM), chronic eosinophilic leukemia, not otherwise specified (CEL, NOS), chronic neutrophilic leukemia (CNL), and unclassifiable MPN (MPN, U). Therapeutic interventions for MPNs include the use of tyrosine kinase inhibitors (TKIs) for BCR-ABL1+ CML and JAK2 inhibitors for PV, ET and PMF. Histone deacetylase inhibitors (HDACi) are a novel class of drugs capable of altering the acetylation status of both histone and non-histone proteins, thereby affecting a repertoire of cellular functions in neoplastic cells including proliferation, differentiation, immune responses, angiogenesis and survival. Preliminary studies indicate that HDACi when used in combination with tyrosine kinase or JAK2 inhibitors may overcome resistance to the latter agents and enhance the pro-apoptotic effects on MPN cells. This review provides a review of pre-clinical and clinical studies that have explored the use of HDACi as potential therapeutics for MPNs

    Recent advances in the bcr-abl negative chronic myeloproliferative diseases

    Get PDF
    The chronic myeloproliferative disorders are clonal hematopoietic stem cell disorders of unknown etiology. In one of these (chronic myeloid leukemia), there is an associated pathognomonic chromosomal abnormality known as the Philadelphia chromosome. This leads to constitutive tyrosine kinase activity which is responsible for the disease and is used as a target for effective therapy. This review concentrates on the search in the other conditions (polycythemia vera, essential thrombocythemia and idiopathic mylofibrosis) for a similar biological marker with therapeutic potential. There is no obvious chromosomal marker in these conditions and yet evidence of clonality can be obtained in females by the use of X-inactivation patterns. PRV-1mRNA over expression, raised vitamin B(12 )levels and raised neutrophil alkaline phosphatase scores are evidence that cells in these conditions have received excessive signals for proliferation, maturation and reduced apoptosis. The ability of erythroid colonies to grow spontaneously without added external erythropoietin in some cases, provided a useful marker and a clue to this abnormal signaling. In the past year several important discoveries have been made which go a long way in elucidating the involved pathways. The recently discovered JAK2 V617F mutation which occurs in the majority of cases of polycythemia vera and in about half of the cases with the two other conditions, enables constitutive tyrosine kinase activity without the need for ligand binding to hematopoietic receptors. This mutation has become the biological marker for these conditions and has spurred the development of a specific therapy to neutralize its effects. The realization that inherited mutations in the thrombopoietin receptor (c-Mpl) can cause a phenotype of thrombocytosis such as in Mpl Baltimore (K39N) and in a Japanese family with S505A, has prompted the search for acquired mutations in this receptor in chronic myeloproliferative disease. Recently, two mutations have been found; W515L and W515K. These mutations have been evident in patients with essential thrombocythemia and idiopathic myelofibrosis but not in polycythemia vera. They presumably act by causing constitutional, activating conformational changes in the receptor. The discovery of JAK2 and Mpl mutations is leading to rapid advancements in understanding the pathophysiology and in the treatment of these diseases
    • …
    corecore