324 research outputs found

    Lefschetz thimble structure in one-dimensional lattice Thirring model at finite density

    Get PDF
    We investigate Lefschetz thimble structure of the complexified path-integration in the one-dimensional lattice massive Thirring model with finite chemical potential. The lattice model is formulated with staggered fermions and a compact auxiliary vector boson (a link field), and the whole set of the critical points (the complex saddle points) are sorted out, where each critical point turns out to be in a one-to-one correspondence with a singular point of the effective action (or a zero point of the fermion determinant). For a subset of critical point solutions in the uniform-field subspace, we examine the upward and downward cycles and the Stokes phenomenon with varying the chemical potential, and we identify the intersection numbers to determine the thimbles contributing to the path-integration of the partition function. We show that the original integration path becomes equivalent to a single Lefschetz thimble at small and large chemical potentials, while in the crossover region multi thimbles must contribute to the path integration. Finally, reducing the model to a uniform field space, we study the relative importance of multiple thimble contributions and their behavior toward continuum and low-temperature limits quantitatively, and see how the rapid crossover behavior is recovered by adding the multi thimble contributions at low temperatures. Those findings will be useful for performing Monte-Carlo simulations on the Lefschetz thimbles.Comment: 32 pages, 14 figures (typo etc. corrected

    Nontriviality of Gauge-Higgs-Yukawa System and Renormalizability of Gauged NJL Model

    Get PDF
    In the leading order of a modified 1/Nc expansion, we show that a class of gauge-Higgs-Yukawa systems in four dimensions give non-trivial and well-defined theories in the continuum limit. The renormalized Yukawa coupling y and the quartic scalar coupling \lambda have to lie on a certain line in the (y,\lambda) plane and the line terminates at an upper bound. The gauged Nambu--Jona-Lasinio (NJL) model in the limit of its ultraviolet cutoff going to infinity, is shown to become equivalent to the gauge-Higgs-Yukawa system with the coupling constants just on that terminating point. This proves the renormalizability of the gauged NJL model in four dimensions. The effective potential for the gauged NJL model is calculated by using renormalization group technique and confirmed to be consistent with the previous result by Kondo, Tanabashi and Yamawaki obtained by the ladder Schwinger-Dyson equation.Comment: 32 pages, LaTeX, 3 Postscript Figures are included as uuencoded files (need `epsf.tex'), KUNS-1278, HE(TH) 94/10 / NIIG-DP-94-2. (Several corrections in the introduction and references.

    Solving the local cohomology problem in U(1) chiral gauge theories within a finite lattice

    Full text link
    In the gauge-invariant construction of abelian chiral gauge theories on the lattice based on the Ginsparg-Wilson relation, the gauge anomaly is topological and its cohomologically trivial part plays the role of the local counter term. We give a prescription to solve the local cohomology problem within a finite lattice by reformulating the Poincar\'e lemma so that it holds true on the finite lattice up to exponentially small corrections. We then argue that the path-integral measure of Weyl fermions can be constructed directly from the quantities defined on the finite lattice.Comment: revised version, 35pages, using JHEP3.cl

    A simple construction of fermion measure term in U(1) chiral lattice gauge theories with exact gauge invariance

    Full text link
    In the gauge invariant formulation of U(1) chiral lattice gauge theories based on the Ginsparg-Wilson relation, the gauge field dependence of the fermion measure is determined through the so-called measure term. We derive a closed formula of the measure term on the finite volume lattice. The Wilson line degrees of freedom (torons) of the link field are treated separately to take care of the global integrability. The local counter term is explicitly constructed with the local current associated with the cohomologically trivial part of the gauge anomaly in a finite volume. The resulted formula is very close to the known expression of the measure term in the infinite volume with a single parameter integration, and would be useful in practical implementations.Comment: 25 pages, uses JHEP3.cls, the version to appear in JHE

    A construction of the Glashow-Weinberg-Salam model on the lattice with exact gauge invariance

    Full text link
    We present a gauge-invariant and non-perturbative construction of the Glashow-Weinberg-Salam model on the lattice, based on the lattice Dirac operator satisfying the Ginsparg-Wilson relation. Our construction covers all SU(2) topological sectors with vanishing U(1) magnetic flux and would be usable for a description of the baryon number non-conservation. In infinite volume, it provides a gauge-invariant regularization of the electroweak theory to all orders of perturbation theory. First we formulate the reconstruction theorem which asserts that if there exists a set of local currents satisfying cetain properties, it is possible to reconstruct the fermion measure which depends smoothly on the gauge fields and fulfills the fundamental requirements such as locality, gauge-invariance and lattice symmetries. Then we give a closed formula of the local currents required for the reconstruction theorem.Comment: 32 pages, uses JHEP3.cls, the version to appear in JHE

    Global obstructions to gauge-invariance in chiral gauge theory on the lattice

    Get PDF
    It is shown that certain global obstructions to gauge-invariance in chiral gauge theory, described in the continuum by Alvarez-Gaume and Ginsparg, are exactly reproduced on the lattice in the Overlap formulation at small non-zero lattice spacing (i.e. close to the classical continuum limit). As a consequence, the continuum anomaly cancellation condition dRabc=0d_R^{abc}=0 is seen to be a necessary (although not necessarily sufficient) condition for anomaly cancellation on the lattice in the Overlap formulation.Comment: 31 pages, latex. v4: A few minor corrections, to appear in Nucl. Phys.

    Chiral anomalies in the reduced model

    Get PDF
    On the basis of an observation due to Kiskis, Narayanan and Neuberger, we show that there is a remnant of chiral anomalies in the reduced model when a Dirac operator which obeys the Ginsparg-Wilson relation is employed for the fermion sector. We consider fermions belonging to the fundamental representation of the gauge group U(N) or SU(N). For vector-like theories, we determine a general form of the axial anomaly or the topological charge within a framework of a U(1) embedding. For chiral gauge theories with the gauge group U(N), a remnant of gauge anomaly emerges as an obstruction to a smooth fermion integration measure. The pure gauge action of gauge-field configurations which cause these non-trivial phenomena always diverges in the 't Hooft NN\to\infty limit when d>2.Comment: 20 pages, uses JHEP.cls and amsfonts.sty, the final version to appear in JHE
    corecore