7 research outputs found

    Hybrid Optimization Method Using Simulated-Annealing-Based Ising Machine and Quantum Annealer

    Full text link
    Ising machines have the potential to realize fast and highly accurate solvers for combinatorial optimization problems. They are classified based on their internal algorithms. Examples include simulated-annealing-based Ising machines (non-quantum-type Ising machines) and quantum-annealing-based Ising machines (quantum annealers). Herein we propose a hybrid optimization method, which utilizes the advantages of both types. In this hybrid optimization method, the preprocessing step is performed by solving the non-quantum-annealing Ising machine multiple times. Then sub-Ising models with a reduced size by spin fixing are solved using a quantum annealer. The performance of the hybrid optimization method is evaluated via simulations using Simulated Annealing (SA) as a non-quantum-type Ising machine and D-Wave Advantage as a quantum annealer. Additionally, we investigate the parameter dependence of the proposed hybrid optimization method. The hybrid optimization method outperforms the preprocessing SA and the quantum annealing machine alone in fully connected random Ising models.Comment: 6 pages, 6 figure

    p53-armed oncolytic adenovirus induces autophagy and apoptosis in KRAS and BRAF-mutant colorectal cancer cells

    Get PDF
    Colorectal cancer (CRC) cells harboring KRAS or BRAF mutations show a more-malignant phenotype than cells with wild-type KRAS and BRAF. KRAS/BRAF-wild-type CRCs are sensitive to epidermal growth factor receptor (EGFR)-targeting agents, whereas KRAS/BRAF-mutant CRCs are resistant due to constitutive activation of the EGFR-downstream KRAS/BRAF signaling pathway. Novel therapeutic strategies to treat KRAS/BRAF mutant CRC cells are thus needed. We recently demonstrated that the telomerase-specific replication-competent oncolytic adenoviruses OBP-301 and p53-armed OBP-702 exhibit therapeutic potential against KRAS-mutant human pancreatic cancer cells. In this study, we evaluated the therapeutic potential of OBP-301 and OBP-702 against human CRC cells with differing KRAS/BRAF status. Human CRC cells with wild-type KRAS/BRAF (SW48, Colo320DM, CACO-2), mutant KRAS (DLD-1, SW620, HCT116), and mutant BRAF (RKO, HT29, COLO205) were used in this study. The antitumor effect of OBP-301 and OBP-702 against CRC cells was analyzed using the XTT assay. Virus-mediated modulation of apoptosis, autophagy, and the EGFR-MEK-ERK and AKT-mTOR signaling pathways was analyzed by Western blotting. Wild-type and KRAS-mutant CRC cells were sensitive to OBP-301 and OBP-702, whereas BRAF-mutant CRC cells were sensitive to OBP-702 but resistant to OBP-301. Western blot analysis demonstrated that OBP-301 induced autophagy and that OBP-702 induced autophagy and apoptosis in human CRC cells. In BRAF-mutant CRC cells, OBP-301 and OBP-702 suppressed the expression of EGFR, MEK, ERK, and AKT proteins, whereas mTOR expression was suppressed only by OBP-702. Our results suggest that p53-armed oncolytic virotherapy is a viable therapeutic option for treating KRAS/BRAF-mutant CRC cells via induction of autophagy and apoptosis

    Fuzzy Morphology with Fuzzy Adaptive Structuring Element and Its Application to Seal Defect Testing

    No full text

    Dynamical Process of a Bit-Width Reduced Ising Model With Simulated Annealing

    No full text
    Ising machines have attracted attention as efficient solvers for combinatorial optimization problems, which are formulated as ground-state (lowest-energy) search problems of the Ising model. Due to the limited bit-width of coefficients on Ising machines, the Ising model must be transformed into a bit-width reduced (BWR) Ising model. According to previous research, the bit-width reduction method, which adds auxiliary spins, ensures that the ground state of the BWR Ising model is theoretically the same as the Ising model before bit-width reduction (original Ising model). However, while the dynamical process is closely related to solution accuracy, how the BWR Ising model progresses towards the ground state remains to be elucidated. Therefore, we compared the dynamical processes of these models using simulated annealing (SA). Our findings reveal significant differences in the dynamical process across models. Analysis from the viewpoint of statistical mechanics found that the BWR Ising model has two characteristic properties: an effective temperature and a slow relaxation. These properties alter the temperature schedule and spin flip probability in the BWR Ising model, leading to differences in the dynamical process. Therefore, to obtain the same dynamical process as the original Ising model, we proposed SA parameters for the BWR Ising model. We demonstrated the proposed SA parameters using a square lattice Ising model, in which all coefficients were set uniformly to the same positive values or randomly. Our experimental evaluations demonstrated that the dynamical process of the BWR and original Ising model became closer

    p53-armed oncolytic adenovirus induces autophagy and apoptosis in KRAS and BRAF-mutant colorectal cancer cells

    No full text
    Colorectal cancer (CRC) cells harboring KRAS or BRAF mutations show a more-malignant phenotype than cells with wild-type KRAS and BRAF. KRAS/BRAF-wild-type CRCs are sensitive to epidermal growth factor receptor (EGFR)-targeting agents, whereas KRAS/BRAF-mutant CRCs are resistant due to constitutive activation of the EGFR-downstream KRAS/BRAF signaling pathway. Novel therapeutic strategies to treat KRAS/BRAF mutant CRC cells are thus needed. We recently demonstrated that the telomerase-specific replication-competent oncolytic adenoviruses OBP-301 and p53-armed OBP-702 exhibit therapeutic potential against KRAS-mutant human pancreatic cancer cells. In this study, we evaluated the therapeutic potential of OBP-301 and OBP-702 against human CRC cells with differing KRAS/BRAF status. Human CRC cells with wild-type KRAS/BRAF (SW48, Colo320DM, CACO-2), mutant KRAS (DLD-1, SW620, HCT116), and mutant BRAF (RKO, HT29, COLO205) were used in this study. The antitumor effect of OBP-301 and OBP-702 against CRC cells was analyzed using the XTT assay. Virus-mediated modulation of apoptosis, autophagy, and the EGFR-MEK-ERK and AKT-mTOR signaling pathways was analyzed by Western blotting. Wild-type and KRAS-mutant CRC cells were sensitive to OBP-301 and OBP-702, whereas BRAF-mutant CRC cells were sensitive to OBP-702 but resistant to OBP-301. Western blot analysis demonstrated that OBP-301 induced autophagy and that OBP-702 induced autophagy and apoptosis in human CRC cells. In BRAF-mutant CRC cells, OBP-301 and OBP-702 suppressed the expression of EGFR, MEK, ERK, and AKT proteins, whereas mTOR expression was suppressed only by OBP-702. Our results suggest that p53-armed oncolytic virotherapy is a viable therapeutic option for treating KRAS/BRAF-mutant CRC cells via induction of autophagy and apoptosis

    A Gedunin-Type Limonoid, 7-Deacetoxy-7-Oxogedunin, from Andiroba (Carapa guianensis Aublet) Reduced Intracellular Triglyceride Content and Enhanced Autophagy in HepG2 Cells

    No full text
    The seed oil of Carapa guianensis Aublet (Andiroba) has been used in folk medicine for its insect-repelling, anti-inflammatory, and anti-malarial activities. This study aimed to examine the triglyceride (TG) reducing effects of C. guianensis-derived limonoids or other commercially available limonoids in human hepatoblastoma HepG2 cells and evaluate the expression of lipid metabolism or autophagy-related proteins by treatment with 7-deacetoxy-7-oxogedunin (DAOG; 1), a principal limonoid of C. guianensis. The gedunin-type limonoids, such as DAOG (% of control at 20 μM: 70.9 ± 0.9%), gedunin (2, 74.0 ± 1.1%), epoxyazadiradione (4, 73.4 ± 2.0%), 17β-hydroxyazadiradione (5, 79.9 ± 0.6%), 7-deacetoxy-7α-hydroxygedunin (6, 61.0 ± 1.2%), andirolide H (7, 87.4 ± 2.2%), and 6α-hydroxygedunin (8, 84.5 ± 1.1%), were observed to reduce the TG content at lower concentrations than berberine chloride (BBR, a positive control, 84.1 ± 0.3% at 30 μM) in HepG2 cells pretreated with high glucose and oleic acid. Andirobin-, obacunol-, nimbin-, and salannin-type limonoids showed no effect on the intracellular TG content in HepG2 cells. The TG-reducing effect of DAOG was attenuated by the concomitant use of compound C (dorsomorphin), an AMPK inhibitor. Further investigation on the detailed mechanism of action of DAOG at non-cytotoxic concentrations revealed that the expressions of autophagy-related proteins, LC3 and p62, were upregulated by treatment with DAOG. These findings suggested that gedunin-type limonoids from Andiroba could ameliorate fatty liver, and that the action of DAOG in particular is mediated by autophagy
    corecore