23 research outputs found

    Committee report : Questionnaire survey on the treatment of COVID-19 in patients receiving dialysis therapy

    Get PDF
    Background: Patients with coronavirus disease 2019 (COVID-19) who receive dialysis therapy develop more severe disease and have a poorer prognosis than patients who do not. Although various data on the treatment of patients not receiving dialysis therapy have been reported, clinical practice for patients on dialysis is challenging as data is limited. The Infection Control Committee of the Japanese Society for Dialysis Therapy decided to clarify the status of treatment in COVID-19 patients on dialysis. Methods: A questionnaire survey of 105 centers that had treated at least five COVID-19 patients on dialysis was conducted in August 2021. Results: Sixty-six centers (62.9%) responded to the questionnaire. Antivirals were administered in 27.7% of facilities treating mild disease (most patients received favipiravir) and 66.7% of facilities treating moderate disease (most patients with moderate or more severe conditions received remdesivir). Whether and how remdesivir is administered varies between centers. Steroids were initiated most frequently in moderate II disease (50.8%), while 43.1% of the facilities initiated steroids in mild or moderate I disease. The type of steroid, dose, and the duration of administration were generally consistent, with most facilities administering dexamethasone 6 mg orally or 6.6 mg intravenously for 10 days. Steroid pulse therapy was administered in 48.5% of the facilities, and tocilizumab was administered in 25.8% of the facilities, mainly to patients on ventilators or equivalent medications, or to the cases of exacerbations. Furthermore, some facilities used a polymethylmethacrylate membrane during dialysis, nafamostat as an anticoagulant, and continuous hemodiafiltration in severe cases. There was limited experience of polymyxin B-immobilized fiber column-direct hemoperfusion and extracorporeal membrane oxygenation. The discharge criteria for patients receiving dialysis therapy were longer than those set by the Ministry of Health, Labor and Welfare in 22.7% of the facilities. Conclusions: Our survey revealed a variety of treatment practices in each facility. Further evidence and innovations are required to improve the prognosis of patients with COVID-19 receiving dialysis therapy

    Investigation for the efficacy of COVID-19 vaccine in Japanese CKD patients treated with hemodialysis

    Get PDF
    Background: Dialysis patients are predisposed to severe disease and have a high mortality rate in coronavirus disease 2019 (COVID-19) due to their comorbidities and immunocompromised conditions. Therefore, dialysis patients should be prioritized for vaccination. This study aimed to examine how long the effects of the vaccine are maintained and what factors affect antibody titers. Methods: Hemodialysis patients (HD group) and age- and sex-matched non-dialysis individuals (Control group), receiving two doses of BNT162b2 vaccine, were recruited through the Japanese Society for Dialysis Therapy (JSDT) Web site in July 2021. Anti-SARS-CoV-2 immunoglobulin (IgG) (SARS-CoV-2 IgG titers) was measured before vaccination, 3 weeks after the first vaccination, 2 weeks after the second vaccination, and 3 months after the second vaccination, and was compared between Control group and HD group. Factors affecting SARS-CoV-2 IgG titers were also examined using multivariable regression analysis and stepwise regression analysis (least AIC). In addition, we compared adverse reactions in Control and HD groups and examined the relationship between adverse reactions and SARS-CoV-2 IgG titers. Results: Our study enrolled 123 participants in the Control group (62.6% men, median age 67.0 years) and 206 patients in the HD group (64.1% men, median age 66.4 years). HD group had significantly lower SARS-CoV-2 IgG titers at 3 weeks after the first vaccination (p < 0.0001), 2 weeks after second vaccination (p = 0.0002), and 3 months after the second vaccination (p = 0.045) than Control group. However, the reduction rate of SARS-CoV-2 IgG titers between 2 weeks and 3 months after the second vaccination was significantly smaller in HD group than in Control (p = 0.048). Stepwise regression analysis revealed that dialysis time was identified as the significant independent factors for SARS-CoV-2 IgG titers at 2 weeks after the second vaccination in HD group (p = 0.002) and longer dialysis time resulted in higher maximum antibody titers. The incidences of fever and nausea after the second vaccination were significantly higher in the HD group (p = 0.039 and p = 0.020). Antibody titers in those with fever were significantly higher than those without fever in both groups (HD: p = 0.0383, Control: p = 0.0096). Conclusion: HD patients had significantly lower antibody titers than age- and sex-matched non-dialysis individuals over 3 months after vaccination. Dialysis time was identified as a factor affecting SARS-CoV-2 IgG titers in HD group, with longer dialysis time resulting in higher maximum SARS-CoV-2 IgG titers

    T-Cell Response and Antibody Production Induced by the COVID-19 Booster Vaccine in Japanese Chronic Kidney Disease Patients Treated with Hemodialysis

    Get PDF
    Humoral and cellular responses are critical in understanding immune responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination. Here, we evaluated these responses in hemodialysis (HD) patients after the booster vaccination. SARS-CoV-2 immunoglobulin (IgG) levels, neutralizing antibody titers, and the T-SPOT®.COVID test (T-SPOT) were measured prior to, three weeks after, and three months after the booster administration. The HD group had significantly higher SARS-CoV-2 IgG levels and neutralizing antibody titers against the original strain at three weeks and three months after the booster vaccination compared to the control group, albeit the HD group had lower SARS-CoV-2 IgG levels and neutralizing antibody titers before the booster administration. Moreover, the HD group had significantly higher T-SPOT levels at all three time points compared to the control group. The HD group also had significantly higher local and systemic adverse reaction rates than the control group. By booster vaccination, HD patients could acquire more effective SARS-CoV-2-specific humoral and cellular immunity than the control group

    Effects of tomato juice on the pharmacokinetics of CYP3A4-substrate drugs

    No full text
    We previously demonstrated that tomato juice (TJ) contains potent mechanism-based inhibitor(s) of CYP3A4. In this study, we investigated the effects of TJ and grapefruit juice (GFJ) on the pharmacokinetics of the CYP3A4-substrate drugs, nifedipine (NFP) and midazolam (MDZ), in male Wistar rats. Oral administration of GFJ 90 min before the intraduodenal administration of NFP or MDZ increased the area under the concentration–time curves (AUCs) of NFP and MDZ by 32.4% and 89.4%, respectively. TJ increased MDZ blood concentrations and AUC after intraduodenal MDZ administration; however, it had no effect on NFP. When MDZ and NFP were intravenously administered, GFJ significantly increased the AUC of MDZ, but only slightly increased that of NFP. In contrast, TJ only slightly increased the AUC of MDZ. These results suggest that, similar to GFJ, TJ influences the pharmacokinetics of CYP3A4-substrate drugs; however, it may be a drug-dependent partial effect

    Cytotoxic Effects of Darinaparsin, a Novel Organic Arsenical, against Human Leukemia Cells

    No full text
    To explore the molecular mechanisms of action underlying the antileukemia activities of darinaparsin, an organic arsenical approved for the treatment of peripheral T&ndash;cell lymphoma in Japan, cytotoxicity of darinaparsin was evaluated in leukemia cell lines NB4, U-937, MOLT-4 and HL-60. Darinaparsin was a more potent cytotoxic than sodium arsenite, and induced apoptosis/necrosis in NB4 and HL-60 cells. In NB4 cells exhibiting the highest susceptibility to darinaparsin, apoptosis induction was accompanied by the activation of caspase-8/-9/-3, a substantial decrease in Bid expression, and was suppressed by Boc-D-FMK, a pancaspase inhibitor, suggesting that darinaparsin triggered a convergence of the extrinsic and intrinsic pathways of apoptosis via Bid truncation. A dramatic increase in the expression level of &gamma;H2AX, a DNA damage marker, occurred in parallel with G2/M arrest. Activation of p53 and the inhibition of cdc25C/cyclin B1/cdc2 were concomitantly observed in treated cells. Downregulation of c-Myc, along with inactivation of E2F1 associated with the activation of Rb, was observed, suggesting the critical roles of p53 and c-Myc in darinaparsin-mediated G2/M arrest. Trolox, an antioxidative reagent, suppressed the apoptosis induction but failed to correct G2/M arrest, suggesting that oxidative stress primarily contributed to apoptosis induction. Suppression of Notch1 signaling was also confirmed. Our findings provide novel insights into molecular mechanisms underlying the cytotoxicity of darinaparsin and strong rationale for its new clinical application for patients with different types of cancer

    Cytotoxic Effects of Darinaparsin, a Novel Organic Arsenical, against Human Leukemia Cells

    No full text
    To explore the molecular mechanisms of action underlying the antileukemia activities of darinaparsin, an organic arsenical approved for the treatment of peripheral T–cell lymphoma in Japan, cytotoxicity of darinaparsin was evaluated in leukemia cell lines NB4, U-937, MOLT-4 and HL-60. Darinaparsin was a more potent cytotoxic than sodium arsenite, and induced apoptosis/necrosis in NB4 and HL-60 cells. In NB4 cells exhibiting the highest susceptibility to darinaparsin, apoptosis induction was accompanied by the activation of caspase-8/-9/-3, a substantial decrease in Bid expression, and was suppressed by Boc-D-FMK, a pancaspase inhibitor, suggesting that darinaparsin triggered a convergence of the extrinsic and intrinsic pathways of apoptosis via Bid truncation. A dramatic increase in the expression level of γH2AX, a DNA damage marker, occurred in parallel with G2/M arrest. Activation of p53 and the inhibition of cdc25C/cyclin B1/cdc2 were concomitantly observed in treated cells. Downregulation of c-Myc, along with inactivation of E2F1 associated with the activation of Rb, was observed, suggesting the critical roles of p53 and c-Myc in darinaparsin-mediated G2/M arrest. Trolox, an antioxidative reagent, suppressed the apoptosis induction but failed to correct G2/M arrest, suggesting that oxidative stress primarily contributed to apoptosis induction. Suppression of Notch1 signaling was also confirmed. Our findings provide novel insights into molecular mechanisms underlying the cytotoxicity of darinaparsin and strong rationale for its new clinical application for patients with different types of cancer
    corecore