227 research outputs found

    Time-dependent single electron tunneling through a shuttling nano-island

    Full text link
    We offer a general approach to calculation of single-electron tunneling spectra and conductance of a shuttle oscillating between two half-metallic leads with fully spin polarized carriers. In this case the spin-flip processes are completely suppressed and the problem may be solved by means of canonical transformation, where the adiabatic component of the tunnel transparency is found exactly, whereas the non-adiabatic corrections can be taken into account perturbatively. Time-dependent corrections to the tunnel conductance of moving shuttle become noticeable at finite bias in the vicinity of the even/odd occupation boundary at the Coulomb diamond diagram.Comment: 12 pages, 4 figure

    Kondo Lattice without Nozieres Exhaustion Effect

    Full text link
    We discuss the properties of layered Anderson/Kondo lattices with metallic electrons confined in 2D xy planes and local spins in insulating layers forming chains in z direction. Each spin in this model possesses its own 2D Kondo cloud, so that the Nozieres' exhaustion problem does not occur. The excitation spectrum of the model is gapless both in charge and spin sectors. The disordered phases and possible experimental realizations of the model are briefly discussed.Comment: 4 pages, 3 figure

    Interplay between Heavy Fermions and Crystal Field Excitation in Kondo Lattices. Low-Temperature Thermodynamics and Inelastic Neutron Scattering Spectra of CeNiSn

    Full text link
    The microscopic theory of interaction between the heavy fermions and the crystal field excitations in Kondo lattices is presented. It is shown that the heavy-fermion spectrum scaled by the Kondo temperature TKT_K can be modified by the crystal field excitations with the energy ΔCF\Delta_{CF} provided the inequality ΔCF<TK\Delta_{CF}<T_K is realized. On the base of general description of excitation spectrum the detailed qualitative and quantitative explanation of anisotropic inelastic neutron scattering spectra and low-temperature specific heat of orthorhombic CeNiSn is given. The theory resolves the apparent contradiction between the metallic conductivity and the gap-wise behavior of thermodynamic properties and spin response of CeNiSn at low temperatures.Comment: 24 pages (LaTeX), 12 Postscript figures, submitted to Phys.Rev.

    Superexchange in Dilute Magnetic Dielectrics: Application to (Ti,Co)O_2

    Full text link
    We extend the model of ferromagnetic superexchange in dilute magnetic semiconductors to the ferromagnetically ordered highly insulating compounds (dilute magnetic dielectrics). The intrinsic ferromagnetism without free carriers is observed in oxygen-deficient films of anatase TiO_2 doped with transition metal impurities in cation sublattice. We suppose that ferromagnetic order arises due to superexchange between complexes [oxygen vacancies + magnetic impurities], which are stabilized by charge transfer from vacancies to impurities. The Hund rule controls the superexchange via empty vacancy related levels so that it becomes possible only for the parallel orientation of impurity magnetic moments. The percolation threshold for magnetic ordering is determined by the radius of vacancy levels, but the exchange mechanism does not require free carriers. The crucial role of the non-stoichiometry in formation of the ferromagnetism makes the Curie temperatures extremely sensitive to the methods of sample preparation.Comment: 18 pages, 2 figure

    Why holes are not like electrons. II. The role of the electron-ion interaction

    Full text link
    In recent work, we discussed the difference between electrons and holes in energy band in solids from a many-particle point of view, originating in the electron-electron interaction, and argued that it has fundamental consequences for superconductivity. Here we discuss the fact that there is also a fundamental difference between electrons and holes already at the single particle level, arising from the electron-ion interaction. The difference between electrons and holes due to this effect parallels the difference due to electron-electron interactions: {\it holes are more dressed than electrons}. We propose that superconductivity originates in 'undressing' of carriers from bothboth electron-electron and electron-ion interactions, and that both aspects of undressing have observable consequences.Comment: Continuation of Phys.Rev.B65, 184502 (2002) = cond-mat/0109385 (2001

    Double exchange mechanisms for Mn doped III-V ferromagnetic semiconductors

    Full text link
    A microscopic model of indirect exchange interaction between transition metal impurities in dilute magnetic semiconductors (DMS) is proposed. The hybridization of the impurity d-electrons with the heavy hole band states is largely responsible for the transfer of electrons between the impurities, whereas Hund rule for the electron occupation of the impurity d-shells makes the transfer spin selective. The model is applied to such systems as n−n-type GaN:Mn and p−p-type (Ga,Mn)As, p−p-type (Ga,Mn)P. In n−n-type DMS with Mn2+/3+^{2+/3+} impurities the exchange mechanisms is rather close to the kinematic exchange proposed by Zener for mixed-valence Mn ions. In p−p-type DMS ferromagnetism is governed by the kinematic mechanism involving the kinetic energy gain of heavy hole carriers caused by their hybridization with 3d electrons of Mn2+^{2+} impurities. Using the molecular field approximation the Curie temperatures TCT_C are calculated for several systems as functions of the impurity and hole concentrations. Comparison with the available experimental data shows a good agreement.Comment: Submitted to PR

    Phonon-assisted and magnetic field induced Kondo tunneling in single molecular devices

    Full text link
    We consider the Kondo tunneling induced by multiphonon emission/absorption processes in magnetic molecular complexes with low-energy singlet-triplet spin gap and show that the number of assisting phonons may be changed by varying the Zeeman splitting of excited triplet state. As a result, the structure of multiphonon Kondo resonances may be scanned by means of magnetic field tuning.Comment: 7 pages, 6 figures. Shortened version of this paper will be published in the Proceedings of the International Conference "Phonons2007" (J. Phys: Conf. Series
    • …
    corecore