1,558 research outputs found
Electronic phase diagram of the layered cobalt oxide system, LixCoO2 (0.0 <= x <= 1.0)
Here we report the magnetic properties of the layered cobalt oxide system,
LixCoO2, in the whole range of Li composition, 0 <= x <= 1. Based on
dc-magnetic susceptibility data, combined with results of 59Co-NMR/NQR
observations, the electronic phase diagram of LixCoO2 has been established. As
in the related material NaxCoO2, a magnetic critical point is found to exist
between x = 0.35 and 0.40, which separates a Pauli-paramagnetic and a
Curie-Weiss metals. In the Pauli-paramagnetic regime (x <= 0.35), the
antiferromagnetic spin correlations systematically increase with decreasing x.
Nevertheless, CoO2, the x = 0 end member is a non-correlated metal in the whole
temperature range studied. In the Curie-Weiss regime (x >= 0.40), on the other
hand, various phase transitions are observed. For x = 0.40, a susceptibility
hump is seen at 30 K, suggesting the onset of static AF order. A magnetic jump,
which is likely to be triggered by charge ordering, is clearly observed at Tt =
175 K in samples with x = 0.50 (= 1/2) and 0.67 (= 2/3), while only a tiny kink
appears at T = 210 K in the sample with an intermediate Li composition, x =
0.60. Thus, the phase diagram of the LixCoO2 system is complex, and the
electronic properties are sensitively influenced by the Li content (x).Comment: 29 pages, 1 table, 9 figure
Optoelectric spin injection in semiconductor heterostructures without ferromagnet
We have shown that electron spin density can be generated by a dc current
flowing across a junction with an embedded asymmetric quantum well. Spin
polarization is created in the quantum well by radiative electron-hole
recombination when the conduction electron momentum distribution is shifted
with respect to the momentum distribution of holes in the spin split valence
subbands. Spin current appears when the spin polarization is injected from the
quantum well into the -doped region of the junction. The accompanied
emission of circularly polarized light from the quantum well can serve as a
spin polarization detector.Comment: 2 figure
Electric-field dependent spin diffusion and spin injection into semiconductors
We derive a drift-diffusion equation for spin polarization in semiconductors
by consistently taking into account electric-field effects and nondegenerate
electron statistics. We identify a high-field diffusive regime which has no
analogue in metals. In this regime there are two distinct spin diffusion
lengths. Furthermore, spin injection from a ferromagnetic metal into a
semiconductor is enhanced by several orders of magnitude and spins can be
transported over distances much greater than the low-field spin diffusion
length.Comment: 5 pages, 3 eps figure
Electron Spin Decoherence in Bulk and Quantum Well Zincblende Semiconductors
A theory for longitudinal (T1) and transverse (T2) electron spin coherence
times in zincblende semiconductor quantum wells is developed based on a
non-perturbative nanostructure model solved in a fourteen-band restricted basis
set. Distinctly different dependences of coherence times on mobility,
quantization energy, and temperature are found from previous calculations.
Quantitative agreement between our calculations and measurements is found for
GaAs/AlGaAs, InGaAs/InP, and GaSb/AlSb quantum wells.Comment: 11 pages, 3 figure
Relativistic quantum model of confinement and the current quark masses
We consider a relativistic quantum model of confined massive spinning quarks
and antiquarks which describes leading Regge trajectories of mesons. The quarks
are described by the Dirac equations and the gluon contribution is approximated
by the Nambu-Goto straight-line string. The string tension and the current
quark masses are the main parameters of the model. Additional parameters are
phenomenological constants which approximate nonstring short-range
contributions. Comparison of the measured meson masses with the model
predictions allows one to determine the current quark masses (in MeV) to be
. The chiral
model[23] makes it possible to estimate from here the - and -quark masses
to be ~ Mev and Mev.Comment: 15 pages, LATEX, 2 tables. (submitted to Phys.Rev.D
Electron spin relaxation by nuclei in semiconductor quantum dots
We have studied theoretically the electron spin relaxation in semiconductor
quantum dots via interaction with nuclear spins. The relaxation is shown to be
determined by three processes: (i) -- the precession of the electron spin in
the hyperfine field of the frozen fluctuation of the nuclear spins; (ii) -- the
precession of the nuclear spins in the hyperfine field of the electron; and
(iii) -- the precession of the nuclear spin in the dipole field of its nuclear
neighbors. In external magnetic fields the relaxation of electron spins
directed along the magnetic field is suppressed. Electron spins directed
transverse to the magnetic field relax completely in a time on the order of the
precession period of its spin in the field of the frozen fluctuation of the
nuclear spins. Comparison with experiment shows that the hyperfine interaction
with nuclei may be the dominant mechanism of electron spin relaxation in
quantum dots
Oscillating magnetoresistance in diluted magnetic semiconductor barrier structures
Ballistic spin polarized transport through diluted magnetic semiconductor
(DMS) single and double barrier structures is investigated theoretically using
a two-component model. The tunneling magnetoresistance (TMR) of the system
exhibits oscillating behavior when the magnetic field are varied. An
interesting beat pattern in the TMR and spin polarization is found for
different NMS/DMS double barrier structures which arises from an interplay
between the spin-up and spin-down electron channels which are splitted by the
s-d exchange interaction.Comment: 4 pages, 6 figures, submitted to Phys. Rev.
Room temperature and low-field resonant enhancement of spin Seebeck effect in partially compensated magnets
Resonant enhancement of spin Seebeck effect (SSE) due to phonons was recently
discovered in Y3Fe5O12 (YIG). This effect is explained by hybridization between
the magnon and phonon dispersions. However, this effect was observed at low
temperatures and high magnetic fields, limiting the scope for applications.
Here we report observation of phonon-resonant enhancement of SSE at room
temperature and low magnetic field. We observed in Lu2BiFe4GaO12 and
enhancement 700 % greater than that in a YIG film and at very low magnetic
fields around 10-1 T, almost one order of magnitude lower than that of YIG. The
result can be explained by the change in the magnon dispersion induced by
magnetic compensation due to the presence of non-magnetic ion substitutions.
Our study provides a way to tune the magnon response in a crystal by chemical
doping with potential applications for spintronic devices.Comment: 17 pages, 4 figure
Dynamic Kerr Effect and Spectral Weight Transfer in the Manganites
We perform pump-probe Kerr spectroscopy in the colossally magnetoresistive
manganite Pr0.67Ca0.33MnO3. Kerr effects uncover surface magnetic dynamics
undetected by established methods based on reflectivity and optical spectral
weight transfer. Our findings indicate the connection between spin and charge
dynamics in the manganites may be weaker than previously thought. Additionally,
important differences between this system and conventional ferromagnetic metals
manifest as long-lived, magneto-optical coupling transients, which may be
generic to all manganites.Comment: 12 text pages, 4 figure
- âŠ