12 research outputs found

    Cytolytic T-cell response against Epstein-Barr virus in lung cancer patients and healthy subjects

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This study aimed to examine whether EBV seropositive patients with lung cancer have an altered virus-specific CTL response, as compared to age-matched healthy controls and whether any variation in this response could be attributed to senescence.</p> <p>Methods</p> <p>Peripheral blood mononuclear cells from lung cancer patients, age-matched and younger healthy individuals were used to measure EBV-specific CTLs after in vitro amplification with the GLCTLVAML and RYSIFFDYM peptides followed by HLA-multimer staining.</p> <p>Results</p> <p>Lung cancer patients and aged-matched controls had significantly lesser EBV-specific CTL than younger healthy individuals. Multimer positive populations from either group did not differ with respect to the percentage of multimer positive CTLs and the intensity of multimer binding.</p> <p>Conclusions</p> <p>This study provides evidence that patients with lung cancer exhibit an EBV-specific CTL response equivalent to that of age-matched healthy counterparts. These data warrant the examination of whether young individuals have a more robust anti-tumor response, as is the case with the anti-EBV response.</p

    Peripheral dose measurement in high-energy photon radiotherapy with the implementation of MOSFET

    No full text
    AIM: To study the peripheral dose (PD) from high-energy photon beams in radiotherapy using the metal oxide semiconductor field effect transistor (MOSFET) dose verification system

    Optimisation of Radiation Exposure to Gastroenterologists and Patients during Therapeutic ERCP

    Get PDF
    This study intended to optimize the radiation doses for gastroenterologists and patients during therapeutic endoscopic retrograde cholangiopancreatography (ERCP) and to compare the doses based on available data obtained by other researchers. A total of 153 patients were studied in two Gastroenterology Departments, (group A, 111; group B, 42). Thermoluminescent dosimeters (TLD) were used to measure the staff and patients entrance surface air kerma (ESAK) at different body sites. The mean ESAK and effective doses per procedure were estimated to be 68.75 mGy and 2.74 mSv, respectively. Staff was exposed to a heterogonous doses. The third examiner (trainee) was exposed to a high dose compared with other examiners because no shield was located to protect him from stray radiation. Patients and examiners doses were lower compared to the lowest values found in previous studies taking into consideration the heterogeneity of patients and equipment. Staff doses during ERCP are within the safety limit in the light of the current practice

    Molecular Biomarkers for Predicting Cancer Patient Radiosensitivity and Radiotoxicity in Clinical Practice

    No full text
    Radiotherapy (RT) is a major part of cancer treatment. The reported variability in patient response to this modality can interfere with the continuation of best-possible care, promote side effects, and lead to long-term morbidity. Tools to predict a patient’s response to radiation could be highly useful in improving therapeutic outcomes while minimizing unnecessary and toxic exposure to radiation. This study investigates the potential of using molecular biomarkers as predictors of radiosensitivity in clinical practice. We review relative studies researching the positive correlation between various molecular biomarkers and patient radiosensitivity, including DNA damage response and repair proteins, inflammation and apoptosis markers, cell cycle regulators, and other biological markers. The clinical perspectives and applicability of these biomarkers in the prediction of radiosensitivity are also critically discussed. Conclusively, we underline the dynamics of molecular biomarkers to improve the efficacy and safety of radiotherapy in clinical practice and highlight the need for further research in this field. Identification of the most prominent markers is crucial for the personalization of therapies entailing ionizing radiation

    Geometrical pre-planning for conformal radiotherapy

    No full text
    The optimum selection of beams and arcs in conformal techniques is of the outmost importance in modern radiotherapy. In this work we give a description of an analytic method to aid optimum selection, which is based on minimizing the intersection between beams and organs at risk ( OAR) and on minimizing the intersection between the beam and the planning target volume (PTV). An arc-selection function that permits selection of irradiation arcs based on individual beam feasibility is introduced. The method simulates the treatment process by defining a computed beam feasibility, for every possible set of gantry-table angles, by taking into account accurately computed intersection volumes between the OAR and beams. The beams are shaped to conform the target using realistic parameters for the treatment process. The results are displayed on a virtual sphere centred at the isocenter with color-coded regions indicating beam feasibility. Arcs selections are performed by searching the map for successive gantry positions at a certain table angle, with feasibility values greater than a user-specified threshold. The accuracy of the method was confirmed by using geometrical regular shapes, as well as real clinical cases
    corecore