12 research outputs found

    Aplib: Tactical Agents for Testing Computer Games

    No full text
    Modern interactive software, such as computer games, employ complex user interfaces. Although these user interfaces make the games attractive and powerful, unfortunately they also make them extremely difficult to test. Not only do we have to deal with their functional complexity, but also the fine grained interactivity of their user interface blows up their interaction space, so that traditional automated testing techniques have trouble handling it. An agent-based testing approach offers an alternative solution: agents’ goal driven planning, adaptivity, and reasoning ability can provide an extra edge towards effective navigation in complex interaction space. This paper presents aplib, a Java library for programming intelligent test agents, featuring novel tactical programming as an abstract way to exert control over agents’ underlying reasoning-based behavior. This type of control is suitable for programming testing tasks. Aplib is implemented in such a way to provide the fluency of a Domain Specific Language (DSL). Its embedded DSL approach also means that aplib programmers will get all the advantages that Java programmers get: rich language features and a whole array of development tools

    Aplib: Tactical Agents for Testing Computer Games

    No full text
    Modern interactive software, such as computer games, employ complex user interfaces. Although these user interfaces make the games attractive and powerful, unfortunately they also make them extremely difficult to test. Not only do we have to deal with their functional complexity, but also the fine grained interactivity of their user interface blows up their interaction space, so that traditional automated testing techniques have trouble handling it. An agent-based testing approach offers an alternative solution: agents’ goal driven planning, adaptivity, and reasoning ability can provide an extra edge towards effective navigation in complex interaction space. This paper presents aplib, a Java library for programming intelligent test agents, featuring novel tactical programming as an abstract way to exert control over agents’ underlying reasoning-based behavior. This type of control is suitable for programming testing tasks. Aplib is implemented in such a way to provide the fluency of a Domain Specific Language (DSL). Its embedded DSL approach also means that aplib programmers will get all the advantages that Java programmers get: rich language features and a whole array of development tools

    Ifuzzer: An evolutionary interpreter fuzzer using genetic programming

    No full text
    We present an automated evolutionary fuzzing technique to find bugs in JavaScript interpreters. Fuzzing is an automated black box testing technique used for finding security vulnerabilities in the software by providing random data as input. However, in the case of an interpreter, fuzzing is challenging because the inputs are piece of codes that should be syntactically/semantically valid to pass the interpreter’s elementary checks. On the other hand, the fuzzed input should also be uncommon enough to trigger exceptional behavior in the interpreter, such as crashes, memory leaks and failing assertions. In our approach, we use evolutionary computing techniques, specifically genetic programming, to guide the fuzzer in generating uncommon input code fragments that may trigger exceptional behavior in the interpreter. We implement a prototype named IFuzzer to evaluate our technique on real-world examples. IFuzzer uses the language grammar to generate valid inputs. We applied IFuzzer first on an older version of the JavaScript interpreter of Mozilla (to allow for a fair comparison to existing work) and found 40 bugs, of which 12 were exploitable. On subsequently targeting the latest builds of the interpreter, IFuzzer found 17 bugs, of which four were security bugs
    corecore