32 research outputs found

    Ecological Niche Modeling of Francisella tularensis Subspecies and Clades in the United States

    Get PDF
    Two subspecies of Francisella tularensis are recognized: F. tularensis subsp. tularensis (type A) and F. tularensis subsp. holartica (type B). Type A has been subdivided further into A1a, A1b, and A2, which differ geographically and clinically. The aim of this work was to determine whether or not differences among subspecies and clades translate into distinct ecological niches. We used 223 isolates from humans and wildlife representing all six genotypes (type A, B, A1, A2, A1a, or A1b). Ecological-niche models were built independently for each genotype, using the genetic algorithm for rule-set prediction. The resulting models were compared using a non-parametric multivariate analysis-of-variance method. A1 and A2 are ecologically distinct, supporting the previously observed geographic division, whereas ecological niches for types A and B overlapped notably but A1a and A1b displayed no appreciable differences in their ecological niches

    The frequency of genes encoding three putative group B streptococcal virulence factors among invasive and colonizing isolates

    Get PDF
    BACKGROUND: Group B Streptococcus (GBS) causes severe infections in very young infants and invasive disease in pregnant women and adults with underlying medical conditions. GBS pathogenicity varies between and within serotypes, with considerable variation in genetic content between strains. Three proteins, Rib encoded by rib, and alpha and beta C proteins encoded by bca and bac, respectively, have been suggested as potential vaccine candidates for GBS. It is not known, however, whether these genes occur more frequently in invasive versus colonizing GBS strains. METHODS: We screened 162 invasive and 338 colonizing GBS strains from different collections using dot blot hybridization to assess the frequency of bca, bac and rib. All strains were defined by serotyping for capsular type, and frequency differences were tested using the Chi square test. RESULTS: Genes encoding the beta C protein (bac) and Rib (rib) occurred at similar frequencies among invasive and colonizing isolates, bac (20% vs. 23%), and rib (28% vs. 20%), while the alpha (bca) C protein was more frequently found in colonizing strains (46%) vs, invasive (29%). Invasive strains were associated with specific serotype/gene combinations. CONCLUSION: Novel virulence factors must be identified to better understand GBS disease

    Lyme Disease in Hispanics, United States, 2000–2013

    No full text
    Hispanics comprise a growing portion of the US population and might have distinct risk factors for tickborne diseases. During 2000–2013, a total of 5,473 Lyme disease cases were reported among Hispanics through national surveillance. Hispanics were more likely than non-Hispanics to have signs of disseminated infection and onset during fall months

    Geographic Distribution and Expansion of Human Lyme Disease, United States

    No full text
    Lyme disease occurs in specific geographic regions of the United States. We present a method for defining high-risk counties based on observed versus expected number of reported human Lyme disease cases. Applying this method to successive periods shows substantial geographic expansion of counties at high risk for Lyme disease

    Epidemiology of Human Plague in the United States, 1900–2012

    No full text
    We summarize the characteristics of 1,006 cases of human plague occurring in the United States over 113 years, beginning with the first documented case in 1900. Three distinct eras can be identified on the basis of the frequency, nature, and geographic distribution of cases. During 1900–1925, outbreaks were common but were restricted to populous port cities. During 1926–1964, the geographic range of disease expanded rapidly, while the total number of reported cases fell. During 1965–2012, sporadic cases occurred annually, primarily in the rural Southwest. Clinical and demographic features of human illness have shifted over time as the disease has moved from crowded cities to the rural West. These shifts reflect changes in the populations at risk, the advent of antibiotics, and improved detection of more clinically indistinct forms of infection. Overall, the emergence of human plague in the United States parallels observed patterns of introduction of exotic plants and animals

    No Geographic Correlation between Lyme Disease and Death Due to 4 Neurodegenerative Disorders, United States, 2001–2010

    No full text
    Associations between Lyme disease and certain neurodegenerative diseases have been proposed, but supportive evidence for an association is lacking. Similar geographic distributions would be expected if 2 conditions were etiologically linked. Thus, we compared the distribution of Lyme disease cases in the United States with the distributions of deaths due to Alzheimer disease, amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS), and Parkinson disease; no geographic correlations were identified. Lyme disease incidence per US state was not correlated with rates of death due to ALS, MS, or Parkinson disease; however, an inverse correlation was detected between Lyme disease and Alzheimer disease. The absence of a positive correlation between the geographic distribution of Lyme disease and the distribution of deaths due to Alzheimer disease, ALS, MS, and Parkinson disease provides further evidence that Lyme disease is not associated with the development of these neurodegenerative conditions

    Discrimination between Francisella tularensis and Francisella-Like Endosymbionts when Screening Ticks by PCR

    No full text
    The presence of Francisella-like endosymbionts in tick species known to transmit tularemia poses a potential diagnostic problem for laboratories that screen tick samples by PCR for Francisella tularensis. Tick samples initially considered positive for F. tularensis based on standard 16S rRNA gene PCR were found to be positive only for Francisella-like endosymbionts using a multitarget F. tularensis TaqMan assay (ISFtu2, tul4, and iglC) and 16S rRNA gene sequencing. Specificity of PCR-based diagnostics for F. tularensis should be carefully evaluated with appropriate specimen types prior to diagnostic use

    Ecological Niche Modeling of Francisella tularensis Subspecies and Clades in the United States

    Get PDF
    Two subspecies of Francisella tularensis are recognized: F. tularensis subsp. tularensis (type A) and F. tularensis subsp. holartica (type B). Type A has been subdivided further into A1a, A1b, and A2, which differ geographically and clinically. The aim of this work was to determine whether or not differences among subspecies and clades translate into distinct ecological niches. We used 223 isolates from humans and wildlife representing all six genotypes (type A, B, A1, A2, A1a, or A1b). Ecological-niche models were built independently for each genotype, using the genetic algorithm for rule-set prediction. The resulting models were compared using a non-parametric multivariate analysis-of-variance method. A1 and A2 are ecologically distinct, supporting the previously observed geographic division, whereas ecological niches for types A and B overlapped notably but A1a and A1b displayed no appreciable differences in their ecological niches
    corecore