4 research outputs found
The formation of dendrites in overtreated CdSeTe/CdTe solar cells
Aggressive cadmium chloride activation conditions (>450°C) used to activate a FTO/CdSeTe/CdTe device in an oxygen enviroment results in the formation of dendrites at the front and back of the device. Most of the dendrite formation occurs at the front interface (FTO/CdSeTe). Optical Microscopy and X-Ray Photoelectron Spectroscopy (XPS) have been used to study the dendrite morphology and chemical composition. Optical images revealed that the dendrites can grow >500µm in length causing a range of discolourations from oxidation (dark brown/pink). The XPS analysis provides evidence for the presence of cadmium oxychlorides.</p
Absorber texture and the efficiency of polycrystalline thin film CdTe solar cells
A range of microstructural changes occur during the deposition and activation of CdTe based thin film solar cells. In particular, the cadmium chloride (CdCl2) activation treatment results in wholesale recrystallisation which transforms the conversion efficiency of the solar cell. One of the noticeable effects is the change of preferred orientation of the CdTe absorber. Highly orientated [111] texture is observed in as deposited or under-treated CdTe based devices. Optimized activation results in a more randomized texture and the [111] preferred texture component is significantly weakened. In this paper we use Electron Backscatter Diffraction to characterise absorber cross-sections. The focus is on how randomization of the absorber texture reflects device performance. We have had access to a range of CdTe devices using a variety of deposition techniques. We have observed a clear pattern that shows that devices with a highly orientated [111] texture have poor efficiency. Devices with a randomized texture have much higher efficiency. Here we illustrate this empirical correlation using devices deposited by Metal Organic Chemical Vapour Deposition with a range of efficiencies from 13.1 % to 17 %. We have also included the analysis of an absorber from a 18.7 % high efficiency CdSeTe/CdTe device to show that texture is similarly important in these advanced devices. We have been able to quantify the effect of texture by using multiples of uniform density or (MUD) values from the inverse pole figures. MUD figures close to 1 correlate with highest efficiency. Although the random texture of the absorber microstructure is only one of several important process factors, it appears to be a necessary feature for highest efficiency CdTe-based polycrystalline solar cells.</p
The effect of remnant CdSe layers on the performance of CdSeTe/CdTe photovoltaic devices
Thin film CdTe-based photovoltaic devices have achieved high efficiency above 22 %. The recent improvement in efficiency is due to Se alloying in the CdTe absorbers to form a CdSeTe/CdTe structure. The subsequent band gap grading increases the short circuit current density. The Se can be introduced by depositing a precursor thin film of either CdSe or a CdSeTe alloy and then diffusing the Se into the CdTe during the high temperature cadmium chloride activation process. Using CdSe is preferred because it is easier to control the Se concentration. However, during fabrication of the CdSeTe/CdTe devices, the CdSe thickness needs to be precisely controlled to prevent the retention of a CdSe remnant layer after the activation treatment. Retention of a remnant CdSe layer causes a dramatic reduction in device efficiency. In this work, we show that the reduction in efficiency is caused by a number of factors. The remnant CdSe layer is n-type which moves the position of the p-n junction. Also, it is widely thought that the CdSe remnants are photo-inactive. In this work, we clarify that the individual CdSe grains are actually highly photo-active. However, the grain sizes in the CdSe remnant and the adjacent CdSeTe layer are very small resulting in a high grain boundary area. Although the grain boundaries are passivated with chlorine, cathodoluminescence imaging and electrical measurements show that this is only partially effective. Also, EQE measurements show that the remnant CdSe causes parasitic absorption. Overall, the remnant CdSe layer causes a reduction in short circuit current density and device efficiency. The thickness of the CdSe precursor layer and the cadmium chloride activation process conditions must be precisely optimised to ensure that all the CdSe is consumed and inter-diffused to form the CdSeTe alloy for highest efficiency devices.</p
Achieving 21.4% efficient CdSeTe/CdTe solar cells using highly resistive intrinsic ZnO buffer layers
In this study, the use of intrinsic and highly insulating ZnO buffer layers to achieve high conversion efficiencies in CdSeTe/CdTe solar cells is reported. The buffer layers are deposited on commercial SnO2:F coated soda‐lime glass substrates and then fabricated into arsenic‐doped CdSeTe/CdTe devices using an absorber and back contact deposited by First Solar. The ZnO thickness is varied from 30 to 200 nm. The devices incorporating a 50 nm ZnO buffer layer achieved an efficiency of 21.23% without an anti‐reflection coating. An improved efficiency of 21.44% is obtained on a substrate with a multilayer anti‐reflection coating deposited prior to device fabrication. The highly efficient ZnO based devices are stable and do not develop anomalous J‐V behavior following environmental tests. High resolution microstructural analysis reveals the formation of a high‐quality ZnO/CdSeTe interface. Unusually, chlorine is not detected as a discrete layer at the interface, these observations point to a high‐quality interface. The extrapolation of Voc to 0 K indicates that interface recombination dominates, suggesting that further improvement is possible. Using device modeling, an attempt is made to understand how this type of device performs so well.</p