215 research outputs found
Time-dependent Hamiltonian estimation for Doppler velocimetry of trapped ions
The time evolution of a closed quantum system is connected to its Hamiltonian
through Schroedinger's equation. The ability to estimate the Hamiltonian is
critical to our understanding of quantum systems, and allows optimization of
control. Though spectroscopic methods allow time-independent Hamiltonians to be
recovered, for time-dependent Hamiltonians this task is more challenging. Here,
using a single trapped ion, we experimentally demonstrate a method for
estimating a time-dependent Hamiltonian of a single qubit. The method involves
measuring the time evolution of the qubit in a fixed basis as a function of a
time-independent offset term added to the Hamiltonian. In our system the
initially unknown Hamiltonian arises from transporting an ion through a static,
near-resonant laser beam. Hamiltonian estimation allows us to estimate the
spatial dependence of the laser beam intensity and the ion's velocity as a
function of time. This work is of direct value in optimizing transport
operations and transport-based gates in scalable trapped ion quantum
information processing, while the estimation technique is general enough that
it can be applied to other quantum systems, aiding the pursuit of high
operational fidelities in quantum control.Comment: 10 pages, 8 figure
An ion trap built with photonic crystal fibre technology
We demonstrate a surface-electrode ion trap fabricated using techniques
transferred from the manufacture of photonic-crystal fibres. This provides a
relatively straightforward route for realizing traps with an electrode
structure on the 100 micron scale with high optical access. We demonstrate the
basic functionality of the trap by cooling a single ion to the quantum ground
state, allowing us to measure a heating rate from the ground state of 787(24)
quanta/s. Variation of the fabrication procedure used here may provide access
to traps in this geometry with trap scales between 100 um and 10 um.Comment: 6 pages, 4 figure
Trapping and ground-state cooling of
We demonstrate co-trapping and sideband cooling of a ion
pair in a cryogenic Paul trap. We study the chemical lifetime of and
its dependence on the apparatus temperature, achieving lifetimes of up to
at 10 K. We demonstrate cooling of translational motion to an
average phonon number of 0.07(1), corresponding to a temperature of . Our results provide a basis for quantum logic spectroscopy experiments of
, as well as other light ions such as , , and
Recommended from our members
An ion trap built with photonic crystal fibre technology
We demonstrate a surface-electrode ion trap fabricated using techniques transferred from the manufacture of photonic-crystal fibres. This provides a relatively straightforward route for realizing traps with an electrode structure on the 100 micron scale with high optical access. We demonstrate the basic functionality of the trap by cooling a single ion to the quantum ground state, allowing us to measure a heating rate from the ground state of 787 ± 24 quanta/s. Variation of the fabrication procedure used here may provide access to traps in this geometry with trap scales between 100 μm and 10 μ
- …