135 research outputs found

    Improved spatial separation of neutral molecules

    Full text link
    We have developed and experimentally demonstrated an improved electrostatic deflector for the spatial separation of molecules according to their dipole-moment-to-mass ratio. The device features a very open structure that allows for significantly stronger electric fields as well as for stronger deflection without molecules crashing into the device itself. We have demonstrated its performance using the prototypical OCS molecule and we discuss opportunities regarding improved quantum-state-selectivity for complex molecules and the deflection of unpolar molecules.Comment: 6 figure

    Strongly driven quantum pendulum of the OCS molecule

    Full text link
    We demonstrate and analyze a strongly driven quantum pendulum in the angular motion of stateselected and laser aligned OCS molecules. Raman-couplings during the rising edge of a 50-picosecond laser pulse create a wave packet of pendular states, which propagates in the confining potential formed by the polarizability interaction between the molecule and the laser field. This wave-packet dynamics manifests itself as pronounced oscillations in the degree of alignment with a laser-intensity dependent period.Comment: 6 pages, 4 figure

    Imaging Molecular Structure through Femtosecond Photoelectron Diffraction on Aligned and Oriented Gas-Phase Molecules

    Get PDF
    This paper gives an account of our progress towards performing femtosecond time-resolved photoelectron diffraction on gas-phase molecules in a pump-probe setup combining optical lasers and an X-ray Free-Electron Laser. We present results of two experiments aimed at measuring photoelectron angular distributions of laser-aligned 1-ethynyl-4-fluorobenzene (C8H5F) and dissociating, laseraligned 1,4-dibromobenzene (C6H4Br2) molecules and discuss them in the larger context of photoelectron diffraction on gas-phase molecules. We also show how the strong nanosecond laser pulse used for adiabatically laser-aligning the molecules influences the measured electron and ion spectra and angular distributions, and discuss how this may affect the outcome of future time-resolved photoelectron diffraction experiments.Comment: 24 pages, 10 figures, Faraday Discussions 17

    HL-1 cells express an inwardly rectifying K+ current activated via muscarinic receptors comparable to that in mouse atrial myocytes

    Get PDF
    An inwardly rectifying K^+ current is present in atrial cardiac myocytes that is activated by acetylcholine (I_{KACh}). Physiologically, activation of the current in the SA node is important in slowing the heart rate with increased parasympathetic tone. It is a paradigm for the direct regulation of signaling effectors by the Gβγ G-protein subunit. Many questions have been addressed in heterologous expression systems with less focus on the behaviour in native myocytes partly because of the technical difficulties in undertaking comparable studies in native cells. In this study, we characterise a potassium current in the atrial-derived cell line HL-1. Using an electrophysiological approach, we compare the characteristics of the potassium current with those in native atrial cells and in a HEK cell line expressing the cloned Kir3.1/3.4 channel. The potassium current recorded in HL-1 is inwardly rectifying and activated by the muscarinic agonist carbachol. Carbachol-activated currents were inhibited by pertussis toxin and tertiapin-Q. The basal current was time-dependently increased when GTP was substituted in the patch-clamp pipette by the non-hydrolysable analogue GTPγS. We compared the kinetics of current modulation in HL-1 with those of freshly isolated atrial mouse cardiomyocytes. The current activation and deactivation kinetics in HL-1 cells are comparable to those measured in atrial cardiomyocytes. Using immunofluorescence, we found GIRK4 at the membrane in HL-1 cells. Real-time RT-PCR confirms the presence of mRNA for the main G-protein subunits, as well as for M2 muscarinic and A1 adenosine receptors. The data suggest HL-1 cells are a good model to study IKAch

    Urine steroid metabolomics for the differential diagnosis of adrenal incidentalomas in the EURINE-ACT study: a prospective test validation study

    Get PDF

    Pituitary-hormone secretion by thyrotropinomas

    Get PDF
    Hormone secretion by somatotropinomas, corticotropinomas and prolactinomas exhibits increased pulse frequency, basal and pulsatile secretion, accompanied by greater disorderliness. Increased concentrations of growth hormone (GH) or prolactin (PRL) are observed in about 30% of thyrotropinomas leading to acromegaly or disturbed sexual functions beyond thyrotropin (TSH)-induced hyperthyroidism. Regulation of non-TSH pituitary hormones in this context is not well understood. We there therefore evaluated TSH, GH and PRL secretion in 6 patients with up-to-date analytical and mathematical tools by 24-h blood sampling at 10-min intervals in a clinical research laboratory. The profiles were analyzed with a new deconvolution method, approximate entropy, cross-approximate entropy, cross-correlation and cosinor regression. TSH burst frequency and basal and pulsatile secretion were increased in patients compared with controls. TSH secretion patterns in patients were more irregular, but the diurnal rhythm was preserved at a higher mean with a 2.5 h phase delay. Although only one patient had clinical acromegaly, GH secretion and IGF-I levels were increased in two other patients and all three had a significant cross-correlation between the GH and TSH. PRL secretion was increased in one patient, but all patients had a significant cross-correlation with TSH and showed decreased PRL regularity. Cross-ApEn synchrony between TSH and GH did not differ between patients and controls, but TSH and PRL synchrony was reduced in patients. We conclude that TSH secretion by thyrotropinomas shares many characteristics of other pituitary hormone-secreting adenomas. In addition, abnormalities in GH and PRL secretion exist ranging from decreased (joint) regularity to overt hypersecretion, although not always clinically obvious, suggesting tumoral transformation of thyrotrope lineage cells

    Data-Driven Robust Control for Type 1 Diabetes Under Meal and Exercise Uncertainties

    Get PDF
    We present a fully closed-loop design for an artificial pancreas (AP) which regulates the delivery of insulin for the control of Type I diabetes. Our AP controller operates in a fully automated fashion, without requiring any manual interaction (e.g. in the form of meal announcements) with the patient. A major obstacle to achieving closed-loop insulin control is the uncertainty in those aspects of a patient's daily behavior that significantly affect blood glucose, especially in relation to meals and physical activity. To handle such uncertainties, we develop a data-driven robust model-predictive control framework, where we capture a wide range of individual meal and exercise patterns using uncertainty sets learned from historical data. These sets are then used in the controller and state estimator to achieve automated, precise, and personalized insulin therapy. We provide an extensive in silico evaluation of our robust AP design, demonstrating the potential of this approach, without explicit meal announcements, to support high carbohydrate disturbances and to regulate glucose levels in large clusters of virtual patients learned from population-wide survey data.Comment: Extended version of paper accepted at the 15th International Conference on Computational Methods in Systems Biolog

    Behavioural and physiological responses of individually housed dairy calves to change in milk feeding frequency at different ages

    Get PDF
    peer reviewedThis study aimed to use a range of non-invasive monitoring technologies to investigate the behavioural and physiological responses of individually housed dairy calves to age at change in milk replacer (MR) feeding frequency. Forty-eight Holstein Friesian calves were individually penned and fed MR (625 g/d) as solids in one of three feeding regimes: (i) once-a-day feeding commencing at age 14 d (OAD14), (ii) once-a-day feeding commencing at age 28 d (OAD28) and (iii) twice-a-day feeding (TAD). Several behavioural (automatic activity sensors), physiological (infrared [IR] thermography and heart rate variability [HRV]) and haematological indicators were used to examine calf responses. Reduction in milk feeding frequency at 14 or 28 d of age increased daily concentrate intakes and drinking water consumption throughout the pre-wean period. Calf lying behaviour was unaffected by reduction in milk feeding frequency; however, TAD calves recorded a significant decrease in total daily lying time during the post-wean period compared with OAD28s. There was no effect of treatment on IR eye or rectal temperature throughout the experiment; however, there was an effect of age, with IR temperature decreasing as calf age increased. OAD14 calves tended to have decreased HRV at days 14 and 16, which is suggestive of an increased stress load. The findings suggest that under high levels of animal husbandry and whilst maintaining the same amount of milk powder/d (625 g/d), reduction in milk feeding frequency from twice to once daily at 28 d can occur without significant impact to behavioural, performance and physiological parameters assessed here
    corecore