24 research outputs found
Febrile diseases in young children in Burkina Faso:Etiologies and the value of rapid diagnostic test in primary healthcare settings
The aim of this thesis is to address the problem of the diagnosis and management of febrile diseases in young children living in rural settings in Burkina Faso. Our aim is to provide more insight into the etiology of febrile disease in the study region, to determine the performance of current diagnostic practices and their effect on drug prescriptions, and to propose some diagnostic alternatives to improve the diagnosis and management of febrile diseases
Recommended from our members
Synthesis and Meta-analysis of 3 Randomized Trials Conducted in Burkina Faso, Ghana, and Uganda Comparing the Effects of Point-of-Care Tests and Diagnostic Algorithms Versus Routine Care on Antibiotic Prescriptions and Clinical Outcomes in Ambulatory Patients <18 Years of Age With Acute Febrile Illness.
This meta-analysis included 3 randomized trials conducted in sub-Saharan Africa comparing the effects of point-of-care tests and diagnostic algorithms versus routine care on antibiotic prescriptions and clinical outcomes in ambulatory patients presenting at outpatient facilities with acute uncomplicated febrile illness
Recommended from our members
A Randomized Trial to Assess the Impact of a Package of Diagnostic Tools and Diagnostic Algorithm on Antibiotic Prescriptions for the Management of Febrile Illnesses Among Children and Adolescents in Primary Health Facilities in Burkina Faso.
BACKGROUND: Low- and middle-income countries face significant challenges in differentiating bacterial from viral causes of febrile illnesses, leading to inappropriate use of antibiotics. This trial aimed to evaluate the impact of an intervention package comprising diagnostic tests, a diagnostic algorithm, and a training-and-communication package on antibiotic prescriptions and clinical outcomes. METHODS: Patients aged 6 months to 18 years with fever or history of fever within the past 7 days with no focus, or a suspected respiratory tract infection, arriving at 2 health facilities were randomized to either the intervention package or standard practice. The primary outcomes were the proportions of patients who recovered at day 7 (D7) and patients prescribed antibiotics at day 0. RESULTS: Of 1718 patients randomized, 1681 (97.8%; intervention: 844; control: 837) completed follow-up: 99.5% recovered at D7 in the intervention arm versus 100% in standard practice (P = .135). Antibiotics were prescribed to 40.6% of patients in the intervention group versus 57.5% in the control arm (risk ratio: 29.3%; 95% CI: 21.8-36.0%; risk difference [RD]: -16.8%; 95% CI: -21.7% to -12.0%; P < .001), which translates to 1 additional antibiotic prescription saved every 6 (95% CI: 5-8) consultations. This reduction was significant regardless of test results for malaria, but was greater in patients without malaria (RD: -46.0%; -54.7% to -37.4%; P < .001), those with a respiratory diagnosis (RD: -38.2%; -43.8% to -32.6%; P < .001), and in children 6-59 months old (RD: -20.4%; -26.0% to -14.9%; P < .001). Except for the period July-September, the reduction was consistent across the other quarters (P < .001). CONCLUSIONS: The implementation of the package can reduce inappropriate antibiotic prescription without compromising clinical outcomes. CLINICAL TRIALS REGISTRATION: clinicaltrials.gov; NCT04081051
Recommended from our members
Advancing Access to Diagnostic Tools Essential for Universal Health Coverage and Antimicrobial Resistance Prevention: An Overview of Trials in Sub-Saharan Africa.
We introduce the Antimicrobial Resistance Diagnostic Use Accelerator program, and the articles in this Supplement, which cover the program in 3 sub-Saharan Africa countries
Febrile illness diagnostics and the malaria-industrial complex: a socio-environmental perspective
Abstract Background Global prioritization of single-disease eradication programs over improvements to basic diagnostic capacity in the Global South have left the world unprepared for epidemics of chikungunya, Ebola, Zika, and whatever lies on the horizon. The medical establishment is slowly realizing that in many parts of sub-Saharan Africa (SSA), particularly urban areas, up to a third of patients suffering from acute fever do not receive a correct diagnosis of their infection. Main body Malaria is the most common diagnosis for febrile patients in low-resource health care settings, and malaria misdiagnosis has soared due to the institutionalization of malaria as the primary febrile illness of SSA by international development organizations and national malaria control programs. This has inadvertently created a “malaria-industrial complex” and historically obstructed our complete understanding of the continent’s complex communicable disease epidemiology, which is currently dominated by a mélange of undiagnosed febrile illnesses. We synthesize interdisciplinary literature from Ghana to highlight the complexity of communicable disease care in SSA from biomedical, social, and environmental perspectives, and suggest a way forward. Conclusion A socio-environmental approach to acute febrile illness etiology, diagnostics, and management would lead to substantial health gains in Africa, including more efficient malaria control. Such an approach would also improve global preparedness for future epidemics of emerging pathogens such as chikungunya, Ebola, and Zika, all of which originated in SSA with limited baseline understanding of their epidemiology despite clinical recognition of these viruses for many decades. Impending ACT resistance, new vaccine delays, and climate change all beckon our attention to proper diagnosis of fevers in order to maximize limited health care resources
On the Potential of Packaging for Reducing Fruit and Vegetable Losses in Sub-Saharan Africa
Access to food remains a critical issue in Sub-Saharan Africa. In fact, 24.1% of its population suffers from undernourishment, and malnutrition affects more than a third of children under five years old. This problem will be exacerbated as the Sub-Saharan African population is predicted to double by 2050. To address this problem, it is imperative to meaningfully improve accessibility of fruits and vegetables for the population.They are an excellent source of vitamins and minerals that can fight malnutrition. Fruit and vegetable accessibility can be improved by reducing losses, which are estimated on average to be 50%. A literature review shows that there are many areas where solutions can be implemented to reduce these losses. These areas, in order of decreasing occurrence in the literature are: Cold storage, harvesting methods and pre-storage treatments, packaging, transport to markets and the sale stage. The reduction of food waste in SSA involves the establishment of better practices in all these areas. After analysis, it emerges that packaging should generate more interest due to its comparative ease of implementation to support other technologies like cold storage. Packaging made from agricultural waste or non-consumable materials should be highlighted to prevent pollution issues. This solution, in addition to offering a strong potential to fight against pollution, could also increase farmers’ income
Algorithms for sequential interpretation of a malaria rapid diagnostic test detecting two different targets of Plasmodium species to improve diagnostic accuracy in a rural setting (Nanoro, Burkina Faso)
Background Malaria rapid diagnostic tests (RDT) have limitations due to the persistence of histidine-rich protein 2 (HRP2) antigen after treatment and low sensitivity of Plasmodium lactate dehydrogenase (pLDH) based RDTs. To improve the diagnosis of malaria in febrile children, two diagnostic algorithms, based on sequential interpretation of a malaria rapid diagnostic test detecting two different targets of Plasmodium species and followed by expert microscopy, were evaluated. Methods Two diagnostic algorithms were evaluated using 407 blood samples collected between April and October 2016 from febrile children and the diagnostic accuracy of both algorithms was determined. Algorithm 1: The result of line T1-HRP2 were read first; if negative, malaria infection was considered to be absent. If positive, confirmation was done with the line T2-pLDH. If T2-pLDH test was negative, the malaria diagnosis was considered as “inconclusive” and microscopy was performed; Algorithm 2: The result of line T2-pLDH were read first; if positive, malaria infection was considered to be present. If negative, confirmation was done with the line T1-HRP2. If T1-HRP2 was positive the malaria diagnosis was considered as “inconclusive” and microscopy was performed. In absence of malaria microscopy, a malaria infection was ruled out in children with an inconclusive diagnostic test result when previous antimalarial treatment was reported. Results For single interpretation, the sensitivity of PfHRP2 was 98.4% and the specificity was 74.2%, and for the pLDH test the sensitivity was 89.3% and the specificity was 98.8%. Malaria was accurately diagnosed using both algorithms in 84.5% children. The algorithms with the two-line malaria RDT classified the test results into two groups: conclusive and inconclusive results. The diagnostic accuracy for conclusive results was 98.3% using diagnostic algorithm 1 and 98.6% using algorithm 2. The sensitivity and specificity for the conclusive results were 98.2% and 98.4% for algorithm 1, and 98.6% and 98.4% for algorithm 2, respectively. There were 63 (15.5%) children who had an “inconclusive” result for whom expert microscopy was needed. In children with inconclusive results (PfHRP2+/pLDH- only) previous antimalarial treatment was reported in 16 children with malaria negative microscopy (16/40; 40%) and 1 child with malaria positive microscopy (1/23; 4.3%). Conclusion The strategy of sequential interpretation of two-line malaria RDT can improve the diagnosis of malaria. However, some cases will still require confirmative testing with microscopy or additional investigations on previous antimalarial treatment
Implementation of a malaria rapid diagnostic test in a rural setting of Nanoro, Burkina Faso: from expectation to reality
Abstract Background Malaria rapid diagnostic tests (RDTs) are nowadays widely used in malaria endemic countries as an alternative to microscopy for the diagnosis of malaria. However, quality control of test performance and execution in the field are important in order to ensure proper use and adequate diagnosis of malaria. The current study compared the performance of a histidine-rich protein 2-based RDT used at peripheral health facilities level in real life conditions with that performed at central reference laboratory level with strict adherence to manufacturer instructions. Methods Febrile children attending rural health clinics were tested for malaria with a RDT provided by the Ministry of Health of Burkina Faso as recommended by the National Malaria Control Programme. In addition, a blood sample was collected in an EDTA tube from all study cases for retesting with the same brand of RDT following the manufacturer’s instructions with expert malaria microscopy as gold standard at the central reference laboratory. Fisher exact test was used to compare the proportions by estimating the p-value (p ≤ 0.05) as statistically significant. Results In total, 407 febrile children were included in the study and malaria was diagnosed in 59.9% (244/407) of the cases with expert malaria microscopy. The sensitivity of malaria RDT testing performed at health facilities was 97.5% and comparable to that achieved at the laboratory (98.8%). The number of malaria false negatives was not statistically significant between the two groups (p = 0.5209). However, the malaria RDT testing performed at health facilities had a specificity issue (52.8%) and was much lower compared to RDT testing performed at laboratory (74.2%). The number of malaria false positives was statistically significantly different between the two groups (p = 0.0005). Conclusion Malaria RDT testing performed at the participating rural health facilities resulted in more malaria false positives compared to those performed at central laboratory. Several factors, including storage and transportation conditions but also training of health workers, are most likely to influence test performance. Therefore, it is very important to have appropriate quality control and training programmes in place to ensure correct performance of RDT testing