2,137 research outputs found

    The multi-functional foot in athletic movement: Extraordinary feats by our extraordinary feet

    Get PDF
    The unique architecture of the foot system provides a sensitive, multi-tensional method of communicating with the surrounding environment. Within the premise of the paper, we discuss three themes: complexity, degeneracy and bio-tensegrity. Complex structures within the foot allow the human movement system to negotiate strategies for dynamic movement during athletic endeavours. We discuss such complex structures with particular attention to properties of a bio-tensegrity system. Degeneracy within the foot structure offers a distinctive solution to the problems posed by differing terrains and uneven surfaces allowing lower extremity structures to overcome perturbation as and when it occurs. This extraordinary structure offers a significant contribution to bipedalism through presenting a robust base of support and as such, should be given more consideration when designing athletic development programmes

    Uniqueness of human running coordination: The integration of modern and ancient evolutionary innovations

    Get PDF
    Running is a pervasive activity across human cultures and a cornerstone of contemporary health, fitness and sporting activities. Yet for the overwhelming predominance of human existence running was an essential prerequisite for survival. A means to hunt, and a means to escape when hunted. In a very real sense humans have evolved to run. Yet curiously, perhaps due to running’s cultural ubiquity and the natural ease with which we learn to run, we rarely consider the uniqueness of human bipedal running within the animal kingdom. Our unique upright, single stance, bouncing running gait imposes a unique set of coordinative difficulties. Challenges demanding we precariously balance our fragile brains in the very position where they are most vulnerable to falling injury while simultaneously retaining stability, steering direction of travel, and powering the upcoming stride: all within the abbreviated time-frames afforded by short, violent ground contacts separated by long flight times. These running coordination challenges are solved through the tightly-integrated blending of primitive evolutionary legacies, conserved from reptilian and vertebrate lineages, and comparatively modern, more exclusively human, innovations. The integrated unification of these top-down and bottom-up control processes bestows humans with an agile control system, enabling us to readily modulate speeds, change direction, negotiate varied terrains and to instantaneously adapt to changing surface conditions. The seamless integration of these evolutionary processes is facilitated by pervasive, neural and biological, activity-dependent adaptive plasticity. Over time, and with progressive exposure, this adaptive plasticity shapes neural and biological structures to best cope with regularly imposed movement challenges. This pervasive plasticity enables the gradual construction of a robust system of distributed coordinated control, comprised of processes that are so deeply collectively entwined that describing their functionality in isolation obscures their true irrevocably entangled nature. Although other species rely on a similar set of coordinated processes to run, the bouncing bipedal nature of human running presents a specific set of coordination challenges, solved using a customized blend of evolved solutions. A deeper appreciation of the foundations of the running coordination phenomenon promotes conceptual clarity, potentially informing future advances in running training and running-injury rehabilitation interventions

    Book Review: Catholic School Leadership

    Get PDF
    Review of Catholic School Leadership by Anthony J. Dosen and Barbara S. Rieckhof

    Quantitative sensory testing in painful hand osteoarthritis demonstrates features of peripheral sensitisation.

    Get PDF
    Hand osteoarthritis (HOA) is a prevalent condition for which treatments are based on analgesia and physical therapies. Our primary objective was to evaluate pain perception in participants with HOA by assessing the characteristics of nodal involvement, pain threshold in each hand joint, and radiological severity. We hypothesised that inflammation in hand osteoarthritis joints enhances sensitivity and firing of peripheral nociceptors, thereby causing chronic pain. Participants with proximal and distal interphalangeal (PIP and DIP) joint HOA and non-OA controls were recruited. Clinical parameters of joint involvement were measured including clinical nodes, VAS (visual analogue score) for pain (0-100 mm scale), HAQ (health assessment questionnaire), and Kellgren-Lawrence scores for radiological severity and pain threshold measurement were performed. The mean VAS in HOA participants was 59.3 mm ± 8.19 compared with 4.0 mm ± 1.89 in the control group (P < 0.0001). Quantitative sensory testing (QST) demonstrated lower pain thresholds in DIP/PIP joints and other subgroups in the OA group including the thumb, metacarpophalangeal (MCPs), joints, and wrists (P < 0.008) but not in controls (P = 0.348). Our data demonstrate that HOA subjects are sensitised to pain due to increased firing of peripheral nociceptors. Future work to evaluate mechanisms of peripheral sensitisation warrants further investigation

    Trellis decoding complexity of linear block codes

    Get PDF
    In this partially tutorial paper, we examine minimal trellis representations of linear block codes and analyze several measures of trellis complexity: maximum state and edge dimensions, total span length, and total vertices, edges and mergers. We obtain bounds on these complexities as extensions of well-known dimension/length profile (DLP) bounds. Codes meeting these bounds minimize all the complexity measures simultaneously; conversely, a code attaining the bound for total span length, vertices, or edges, must likewise attain it for all the others. We define a notion of “uniform” optimality that embraces different domains of optimization, such as different permutations of a code or different codes with the same parameters, and we give examples of uniformly optimal codes and permutations. We also give some conditions that identify certain cases when no code or permutation can meet the bounds. In addition to DLP-based bounds, we derive new inequalities relating one complexity measure to another, which can be used in conjunction with known bounds on one measure to imply bounds on the others. As an application, we infer new bounds on maximum state and edge complexity and on total vertices and edges from bounds on span lengths
    corecore