78 research outputs found

    Grasping the Finer Point: A Supervised Similarity Network for Metaphor Detection

    Get PDF
    The ubiquity of metaphor in our everyday communication makes it an important problem for natural language understanding. Yet, the majority of metaphor processing systems to date rely on hand engineered features and there is still no consensus in the field as to which features are optimal for this task. In this paper, we present the first deep learning architecture designed to capture metaphorical composition. Our results demonstrate that it outperforms the existing approaches in the metaphor identification task

    Evaluation by association: A systematic study of quantitative word association evaluation

    Get PDF
    Recent work on evaluating representation learning architectures in NLP has established a need for evaluation protocols based on subconscious cognitive measures rather than manually tailored intrinsic similarity and relatedness tasks. In this work, we propose a novel evaluation framework that enables large-scale evaluation of such architectures in the free word association (WA) task, which is firmly grounded in cognitive theories of human semantic representation. This evaluation is facilitated by the existence of large manually constructed repositories of word association data. In this paper, we (1) present a detailed analysis of the new quantitative WA evaluation protocol, (2) suggest new evaluation metrics for the WA task inspired by its direct analogy with information retrieval problems, (3) evaluate various state-of-the-art representation models on this task, and (4) discuss the relationship between WA and prior evaluations of semantic representation with well-known similarity and relatedness evaluation sets. We have made the WA evaluation toolkit publicly available

    HyperLex: A Large-Scale Evaluation of Graded Lexical Entailment

    Get PDF
    We introduce HyperLex — a dataset and evaluation resource that quantifies the extent of of the semantic category membership, that is, type-of relation also known as hyponymy–hypernymy or lexical entailment (LE) relation between 2,616 concept pairs. Cognitive psychology research has established that typicality and category/class membership are computed in human semantic memory as a gradual rather than binary relation. Nevertheless, most NLP research, and existing large-scale inventories of concept category membership (WordNet, DBPedia, etc.) treat category membership and LE as binary. To address this, we asked hundreds of native English speakers to indicate typicality and strength of category membership between a diverse range of concept pairs on a crowdsourcing platform. Our results confirm that category membership and LE are indeed more gradual than binary. We then compare these human judgments with the predictions of automatic systems, which reveals a huge gap between human performance and state-of-the-art LE, distributional and representation learning models, and substantial differences between the models themselves. We discuss a pathway for improving semantic models to overcome this discrepancy, and indicate future application areas for improved graded LE systems.This work is supported by the ERC Consolidator Grant (no 648909)

    Non-Compositional Term Dependence for Information Retrieval

    Full text link
    Modelling term dependence in IR aims to identify co-occurring terms that are too heavily dependent on each other to be treated as a bag of words, and to adapt the indexing and ranking accordingly. Dependent terms are predominantly identified using lexical frequency statistics, assuming that (a) if terms co-occur often enough in some corpus, they are semantically dependent; (b) the more often they co-occur, the more semantically dependent they are. This assumption is not always correct: the frequency of co-occurring terms can be separate from the strength of their semantic dependence. E.g. "red tape" might be overall less frequent than "tape measure" in some corpus, but this does not mean that "red"+"tape" are less dependent than "tape"+"measure". This is especially the case for non-compositional phrases, i.e. phrases whose meaning cannot be composed from the individual meanings of their terms (such as the phrase "red tape" meaning bureaucracy). Motivated by this lack of distinction between the frequency and strength of term dependence in IR, we present a principled approach for handling term dependence in queries, using both lexical frequency and semantic evidence. We focus on non-compositional phrases, extending a recent unsupervised model for their detection [21] to IR. Our approach, integrated into ranking using Markov Random Fields [31], yields effectiveness gains over competitive TREC baselines, showing that there is still room for improvement in the very well-studied area of term dependence in IR

    Answering Complex Open-Domain Questions with Multi-Hop Dense Retrieval

    Get PDF
    We propose a simple and efficient multi-hop dense retrieval approach for answering complex open-domain questions, which achieves state-of-the-art performance on two multi-hop datasets, HotpotQA and multi-evidence FEVER. Contrary to previous work, our method does not require access to any corpus-specific information, such as inter-document hyperlinks or human-annotated entity markers, and can be applied to any unstructured text corpus. Our system also yields a much better efficiency-accuracy trade-off, matching the best published accuracy on HotpotQA while being 10 times faster at inference time

    Post-Translational Loss of Renal TRPV5 Calcium Channel Expression, Ca2+ Wasting, and Bone Loss in Experimental Colitis

    Get PDF
    Dysregulated Ca2+ homeostasis likely contributes to the etiology of IBD-associated loss of bone mineral density (BMD). Experimental colitis leads to decreased expression of Klotho, a protein which supports renal Ca2+ reabsorption by stabilizing TRPV5 channel on the apical membrane of distal tubule epithelial cells
    corecore