22 research outputs found
Quantum Speedup by Quantum Annealing
We study the glued-trees problem of Childs et. al. in the adiabatic model of
quantum computing and provide an annealing schedule to solve an oracular
problem exponentially faster than classically possible. The Hamiltonians
involved in the quantum annealing do not suffer from the so-called sign
problem. Unlike the typical scenario, our schedule is efficient even though the
minimum energy gap of the Hamiltonians is exponentially small in the problem
size. We discuss generalizations based on initial-state randomization to avoid
some slowdowns in adiabatic quantum computing due to small gaps.Comment: 7 page
Improved techniques for preparing eigenstates of fermionic Hamiltonians
Modeling low energy eigenstates of fermionic systems can provide insight into chemical reactions and material properties and is one of the most anticipated applications of quantum computing. We present three techniques for reducing the cost of preparing fermionic Hamiltonian eigenstates using phase estimation. First, we report a polylogarithmic-depth quantum algorithm for antisymmetrizing the initial states required for simulation of fermions in first quantization. This is an exponential improvement over the previous state-of-the-art. Next, we show how to reduce the overhead due to repeated state preparation in phase estimation when the goal is to prepare the ground state to high precision and one has knowledge of an upper bound on the ground state energy that is less than the excited state energy (often the case in quantum chemistry). Finally, we explain how one can perform the time evolution necessary for the phase estimation based preparation of Hamiltonian eigenstates with exactly zero error by using the recently introduced qubitization procedure
Quantum Chemistry in the Age of Quantum Computing
Practical challenges in simulating quantum systems on classical computers have been widely recognized in the quantum physics and quantum chemistry communities over the past century. Although many approximation methods have been introduced, the complexity of quantum mechanics remains hard to appease. The advent of quantum computation brings new pathways to navigate this challenging complexity landscape. By manipulating quantum states of matter and taking advantage of their unique features such as superposition and entanglement, quantum computers promise to efficiently deliver accurate results for many important problems in quantum chemistry such as the electronic structure of molecules. In the past two decades significant advances have been made in developing algorithms and physical hardware for quantum computing, heralding a revolution in simulation of quantum systems. This article is an overview of the algorithms and results that are relevant for quantum chemistry. The intended audience is both quantum chemists who seek to learn more about quantum computing, and quantum computing researchers who would like to explore applications in quantum chemistry
Quantum walks: a comprehensive review
Quantum walks, the quantum mechanical counterpart of classical random walks,
is an advanced tool for building quantum algorithms that has been recently
shown to constitute a universal model of quantum computation. Quantum walks is
now a solid field of research of quantum computation full of exciting open
problems for physicists, computer scientists, mathematicians and engineers.
In this paper we review theoretical advances on the foundations of both
discrete- and continuous-time quantum walks, together with the role that
randomness plays in quantum walks, the connections between the mathematical
models of coined discrete quantum walks and continuous quantum walks, the
quantumness of quantum walks, a summary of papers published on discrete quantum
walks and entanglement as well as a succinct review of experimental proposals
and realizations of discrete-time quantum walks. Furthermore, we have reviewed
several algorithms based on both discrete- and continuous-time quantum walks as
well as a most important result: the computational universality of both
continuous- and discrete- time quantum walks.Comment: Paper accepted for publication in Quantum Information Processing
Journa
Phase transition in Random Circuit Sampling
Quantum computers hold the promise of executing tasks beyond the capability
of classical computers. Noise competes with coherent evolution and destroys
long-range correlations, making it an outstanding challenge to fully leverage
the computation power of near-term quantum processors. We report Random Circuit
Sampling (RCS) experiments where we identify distinct phases driven by the
interplay between quantum dynamics and noise. Using cross-entropy benchmarking,
we observe phase boundaries which can define the computational complexity of
noisy quantum evolution. We conclude by presenting an RCS experiment with 70
qubits at 24 cycles. We estimate the computational cost against improved
classical methods and demonstrate that our experiment is beyond the
capabilities of existing classical supercomputers
Suppressing quantum errors by scaling a surface code logical qubit
Practical quantum computing will require error rates that are well below what
is achievable with physical qubits. Quantum error correction offers a path to
algorithmically-relevant error rates by encoding logical qubits within many
physical qubits, where increasing the number of physical qubits enhances
protection against physical errors. However, introducing more qubits also
increases the number of error sources, so the density of errors must be
sufficiently low in order for logical performance to improve with increasing
code size. Here, we report the measurement of logical qubit performance scaling
across multiple code sizes, and demonstrate that our system of superconducting
qubits has sufficient performance to overcome the additional errors from
increasing qubit number. We find our distance-5 surface code logical qubit
modestly outperforms an ensemble of distance-3 logical qubits on average, both
in terms of logical error probability over 25 cycles and logical error per
cycle ( compared to ). To investigate
damaging, low-probability error sources, we run a distance-25 repetition code
and observe a logical error per round floor set by a single
high-energy event ( when excluding this event). We are able
to accurately model our experiment, and from this model we can extract error
budgets that highlight the biggest challenges for future systems. These results
mark the first experimental demonstration where quantum error correction begins
to improve performance with increasing qubit number, illuminating the path to
reaching the logical error rates required for computation.Comment: Main text: 6 pages, 4 figures. v2: Update author list, references,
Fig. S12, Table I
Measurement-induced entanglement and teleportation on a noisy quantum processor
Measurement has a special role in quantum theory: by collapsing the
wavefunction it can enable phenomena such as teleportation and thereby alter
the "arrow of time" that constrains unitary evolution. When integrated in
many-body dynamics, measurements can lead to emergent patterns of quantum
information in space-time that go beyond established paradigms for
characterizing phases, either in or out of equilibrium. On present-day NISQ
processors, the experimental realization of this physics is challenging due to
noise, hardware limitations, and the stochastic nature of quantum measurement.
Here we address each of these experimental challenges and investigate
measurement-induced quantum information phases on up to 70 superconducting
qubits. By leveraging the interchangeability of space and time, we use a
duality mapping, to avoid mid-circuit measurement and access different
manifestations of the underlying phases -- from entanglement scaling to
measurement-induced teleportation -- in a unified way. We obtain finite-size
signatures of a phase transition with a decoding protocol that correlates the
experimental measurement record with classical simulation data. The phases
display sharply different sensitivity to noise, which we exploit to turn an
inherent hardware limitation into a useful diagnostic. Our work demonstrates an
approach to realize measurement-induced physics at scales that are at the
limits of current NISQ processors
Dynamics of magnetization at infinite temperature in a Heisenberg spin chain
Understanding universal aspects of quantum dynamics is an unresolved problem
in statistical mechanics. In particular, the spin dynamics of the 1D Heisenberg
model were conjectured to belong to the Kardar-Parisi-Zhang (KPZ) universality
class based on the scaling of the infinite-temperature spin-spin correlation
function. In a chain of 46 superconducting qubits, we study the probability
distribution, , of the magnetization transferred across the
chain's center. The first two moments of show superdiffusive
behavior, a hallmark of KPZ universality. However, the third and fourth moments
rule out the KPZ conjecture and allow for evaluating other theories. Our
results highlight the importance of studying higher moments in determining
dynamic universality classes and provide key insights into universal behavior
in quantum systems
Non-Abelian braiding of graph vertices in a superconducting processor
Indistinguishability of particles is a fundamental principle of quantum
mechanics. For all elementary and quasiparticles observed to date - including
fermions, bosons, and Abelian anyons - this principle guarantees that the
braiding of identical particles leaves the system unchanged. However, in two
spatial dimensions, an intriguing possibility exists: braiding of non-Abelian
anyons causes rotations in a space of topologically degenerate wavefunctions.
Hence, it can change the observables of the system without violating the
principle of indistinguishability. Despite the well developed mathematical
description of non-Abelian anyons and numerous theoretical proposals, the
experimental observation of their exchange statistics has remained elusive for
decades. Controllable many-body quantum states generated on quantum processors
offer another path for exploring these fundamental phenomena. While efforts on
conventional solid-state platforms typically involve Hamiltonian dynamics of
quasi-particles, superconducting quantum processors allow for directly
manipulating the many-body wavefunction via unitary gates. Building on
predictions that stabilizer codes can host projective non-Abelian Ising anyons,
we implement a generalized stabilizer code and unitary protocol to create and
braid them. This allows us to experimentally verify the fusion rules of the
anyons and braid them to realize their statistics. We then study the prospect
of employing the anyons for quantum computation and utilize braiding to create
an entangled state of anyons encoding three logical qubits. Our work provides
new insights about non-Abelian braiding and - through the future inclusion of
error correction to achieve topological protection - could open a path toward
fault-tolerant quantum computing