91 research outputs found

    p53 mutant His175 identified in a newly established fallopian tube carcinoma cell line secreting interleukin 6

    Get PDF
    AbstractFallopian tube carcinoma is a lethal gynecologic malignancy. Etiologic factors are unknown. No experimental data on molecular alterations exist so far. For an in vitro model, we established the permanent human tubal carcinoma cell line FT-MZ-1. The median doubling time was 14 days with 24.2% in S phase. A point missense mutation of the p53 tumor suppressor gene resulting in the His175 mutant was identified. Aberrant p53 protein accumulated in nucleus and cytoplasm. FT-MZ-1 substantially secreted interleukin 6 (Il-6) coinciding with the inactivation of p53 as a transrepressor on the Il-6 gene promoter

    Microarray Analysis Reveals Distinct Gene Expression Profiles Among Different Tumor Histology, Stage and Disease Outcomes in Endometrial Adenocarcinoma

    Get PDF
    Endometrial cancer is the most common gynecologic malignancy in developed countries and little is known about the underlying mechanism of stage and disease outcomes. The goal of this study was to identify differentially expressed genes (DEG) between late vs. early stage endometrioid adenocarcinoma (EAC) and uterine serous carcinoma (USC), as well as between disease outcomes in each of the two histological subtypes.Gene expression profiles of 20 cancer samples were analyzed (EAC = 10, USC = 10) using the human genome wide illumina bead microarrays. There was little overlap in the DEG sets between late vs. early stages in EAC and USC, and there was an insignificant overlap in DEG sets between good and poor prognosis in EAC and USC. Remarkably, there was no overlap between the stage-derived DEGs and the prognosis-derived DEGs for each of the two histological subtypes. Further functional annotation of differentially expressed genes showed that the composition of enriched function terms were different among different DEG sets. Gene expression differences for selected genes of various stages and outcomes were confirmed by qRT-PCR with a high validation rate.This data, although preliminary, suggests that there might be involvement of distinct groups of genes in tumor progression (late vs. early stage) in each of the EAC and USC. It also suggests that these genes are different from those involved in tumor outcome (good vs. poor prognosis). These involved genes, once clinically verified, may be important for predicting tumor progression and tumor outcome

    Intron variants of the p53 gene are associated with increased risk for ovarian cancer but not in carriers of BRCA1 or BRCA2 germline mutations

    Get PDF
    Two biallelic polymorphisms in introns 3 and 6 of the p53 gene were analysed for a possible risk-modifying effect for ovarian cancer. Germline DNA was genotyped from 310 German Caucasian ovarian cancer patients and 364 healthy controls. We also typed 124 affected and 276 unaffected female carriers with known deleterious BRCA1 or BRCA2 germline mutation from high-risk breast-ovarian cancer families. Genotyping was based on PCR and high-resolution gel electrophoresis. German ovarian cancer patients who carried the rare allele of the MspI restriction fragment length polymorphism (RELP) in intron 6 were found to have an overall 1.93-fold increased risk (95% confidence internal (CI) 1.27–2.91) which further increased with the age at diagnosis of 41–60 years (odds ratio (OR) 2.71, 95% CI 1.10–6.71 for 41–50 and OR 2.44, 95% CI 1.12–5.28 for 51–60). The 16 bp duplication polymorphism in intron 3 was in a strong linkage to the MspI RFLP. In BRCA1 or BRCA2 mutation carriers, no difference in allele frequency was observed for carriers affected or unaffected with ovarian cancer. Our data suggest that intronic polymorphisms of the p53 gene modify the risk for ovarian cancer patients but not in carriers with BRCA1 or BRCA2 mutations. © 1999 Cancer Research Campaig

    Association Between Chromosome 9p21 Variants and the Ankle-Brachial Index Identified by a Meta-Analysis of 21 Genome-Wide Association Studies

    Get PDF
    Genetic determinants of peripheral arterial disease (PAD) remain largely unknown. To identify genetic variants associated with the ankle-brachial index (ABI), a noninvasive measure of PAD, we conducted a meta-analysis of genome-wide association study data from 21 population-based cohorts

    Factors influencing subcellular localization of the human papillomavirus L2 minor structural protein

    No full text
    Two structural proteins form the capsids of papillomaviruses. The major structural protein L1 is the structural determinant of the capsids and is present in 360 copies arranged in 72 pentamers. The minor structural protein L2 is estimated to be present in twelve copies per capsid. Possible roles for L2 in interaction with cell surface receptors and in virion uptake have been suggested. As previously reported, L2 localizes in subnuclear domains identified as nuclear domain 10 (ND10). As it was demonstrated that L2 is able to recruit viral and cellular proteins to ND10, a possible role for L2 as a mediator in viral assembly has been proposed. In this study, we determined factors influencing the localization of L2 at ND10. Under conditions of moderate L2 expression level and in the absence of heterologous viral components, we observed that, in contrast to previous reports, L2 is mainly distributed homogeneously throughout the nucleus. L2, however, is recruited to ND10 at a higher expression level or in the presence of viral components derived from vaccinia virus or from Semliki Forest virus. We observed that translocation of L2 to ND10 is not a concentration-dependent accumulation but rather seems to be triggered by yet unidentified cellular factors. In contrast to HPV 11 and 16 L2, the HPV 18 L2 protein seems to require L1 for efficient nuclear accumulation

    Enhanced T cell receptor gene therapy for cancer

    No full text
    Importance of the field: Adoptive therapy with T cell receptor- (TCR-) redirected T cells has shown efficacy in mouse tumor models and first responses in cancer patients. One prerequisite to elicit effective anti-tumor reactivity is the transfer of high-avidity T cells. Their generation, however, faces several technical difficulties. Target antigens are often expressed at low levels and their recognition requires the use of high-affine receptors. Yet, mainly low-affine TCRs have been isolated from tumor-infiltrating lymphocytes. Furthermore, upon transfer into a T cell the introduced receptor has to compete with the endogenous TCR. Areas covered in this review: This review discusses how the functional avidity of TCR-modified T cells can be enhanced by i) increasing the amount of introduced TCR heterodimers on the cell surface; and ii) generating receptors with high affinity. Risks of TCR gene therapy and possible safety mechanisms are discussed. What the reader will gain: The reader will gain an overview of the technical developments in TCR and T cell engineering. Take home message: Despite technical obstacles many advances have been made in the generation of high-avidity T cells expressing enhanced TCRs. Mouse studies and clinical trials will evaluate the effect of these improvements

    A method for the generation of TCR retrogenic mice

    No full text
    Retrogenic mice provide a unique system for rapidly analyzing the function of genes in the hematopoietic system. Here, we provide a detailed protocol for the production of retrogenic mice expressing genes coding for T cell receptor (TCR) for antigen. This technology should be easy to establish in any laboratory and should allow for a rapid progress in our understanding of the functional roles of TCR repertoires in immunity
    corecore