6 research outputs found

    Dominance of Escherichia coli sequence types ST73, ST95, ST127 and ST131 in Australian urine isolates: a genomic analysis of antimicrobial resistance and virulence linked to F plasmids

    Get PDF
    Extraintestinal pathogenic Escherichia coli (ExPEC) are the most frequent cause of urinary tract infections (UTIs) globally. Most studies of clinical E. coli isolates are selected based on their antimicrobial resistance (AMR) phenotypes; however, this selection bias may not provide an accurate portrayal of which sequence types (STs) cause the most disease. Here, whole genome sequencing (WGS) was performed on 320 E. coli isolates from urine samples sourced from a regional hospital in Australia in 2006. Most isolates (91%) were sourced from patients with UTIs and were not selected based on any AMR phenotypes. No significant differences were observed in AMR and virulence genes profiles across age sex, and uro-clinical syndromes. While 88 STs were identified, ST73, ST95, ST127 and ST131 dominated. F virulence plasmids carrying senB-cjrABC (126/231; 55%) virulence genes were a feature of this collection. These senB-cjrABC+ plasmids were split into two categories: pUTI89-like (F29:A- :B10 and/or >95% identity to pUTI89) (n=73) and non-pUTI89-like (n=53). Compared to all other plasmid replicons, isolates with pUTI89-like plasmids carried fewer antibiotic resistance genes (ARGs), whilst isolates with senB-cjrABC+/non-pUTI89 plasmids had a significantly higher load of ARGs and class 1 integrons. F plasmids were not detected in 89 genomes, predominantly ST73. Our phylogenomic analyses identified closely related isolates from the same patient associated with different pathologies and evidence of strain-sharing events involving isolates sourced from companion and wild animals.Dmitriy Li, Paarthiphan Elankumaran, Timothy Kudinha, Amanda K. Kidsley, Darren J. Trott, Veronica Maria Jarocki, and Steven Philip Djordjevi

    Companion animals are spillover hosts of the Multidrug-resistant human extraintestinal escherichia coli pandemic Clones ST131 and ST1193

    Get PDF
    Escherichia coli sequence types 131 (ST131) and 1193 are multidrug-resistant extraintestinal pathogens that have recently spread epidemically among humans and are occasionally isolated from companion animals. This study characterized a nationwide collection of fluoroquinolone-resistant (FQR) E. coli isolates from extraintestinal infections in Australian cats and dogs. For this, 59 cat and dog FQR clinical E. coli isolates (representing 6.9% of an 855-isolate collection) underwent PCR-based phylotyping and whole-genome sequencing (WGS). Isolates from commensal-associated phylogenetic groups A (14/59, 24%) and B1 (18/59, 31%) were dominant, with ST224 (10/59, 17%), and ST744 (8/59, 14%) predominating. Less prevalent were phylogenetic groups D (12/59, 20%), with ST38 (8/59, 14%) predominating, and virulence-associated phylogenetic group B2 (7/59, 12%), with ST131 predominating (6/7, 86%) and no ST1193 isolates identified. In a WGS-based comparison of 20 cat and dog-source ST131 isolates with 188 reference human and animal ST131 isolates, the cat and dog-source isolates were phylogenetically diverse. Although cat and dog-source ST131 isolates exhibited some minor sub-clustering, most were closely related to human-source ST131 strains. Furthermore, the prevalence of ST131 as a cause of FQR infections in Australian companion animals was relatively constant between this study and the 5-year-earlier study of Platell et al. (2010) (9/125 isolates, 7.2%). Thus, although the high degree of clonal commonality among FQR clinical isolates from humans vs. companion animals suggests the possibility of bi-directional between-species transmission, the much higher reported prevalence of ST131 and ST1193 among FQR clinical isolates from humans as compared to companion animals suggests that companion animals are spillover hosts rather than being a primary reservoir for these lineages

    Companion animals are spillover hosts of the Multidrug-resistant human extraintestinal escherichia coli pandemic Clones ST131 and ST1193

    Get PDF
    Escherichia coli sequence types 131 (ST131) and 1193 are multidrug-resistant extraintestinal pathogens that have recently spread epidemically among humans and are occasionally isolated from companion animals. This study characterized a nationwide collection of fluoroquinolone-resistant (FQR) E. coli isolates from extraintestinal infections in Australian cats and dogs. For this, 59 cat and dog FQR clinical E. coli isolates (representing 6.9% of an 855-isolate collection) underwent PCR-based phylotyping and whole-genome sequencing (WGS). Isolates from commensal-associated phylogenetic groups A (14/59, 24%) and B1 (18/59, 31%) were dominant, with ST224 (10/59, 17%), and ST744 (8/59, 14%) predominating. Less prevalent were phylogenetic groups D (12/59, 20%), with ST38 (8/59, 14%) predominating, and virulence-associated phylogenetic group B2 (7/59, 12%), with ST131 predominating (6/7, 86%) and no ST1193 isolates identified. In a WGS-based comparison of 20 cat and dog-source ST131 isolates with 188 reference human and animal ST131 isolates, the cat and dog-source isolates were phylogenetically diverse. Although cat and dog-source ST131 isolates exhibited some minor sub-clustering, most were closely related to human-source ST131 strains. Furthermore, the prevalence of ST131 as a cause of FQR infections in Australian companion animals was relatively constant between this study and the 5-year-earlier study of Platell et al. (2010) (9/125 isolates, 7.2%). Thus, although the high degree of clonal commonality among FQR clinical isolates from humans vs. companion animals suggests the possibility of bi-directional between-species transmission, the much higher reported prevalence of ST131 and ST1193 among FQR clinical isolates from humans as compared to companion animals suggests that companion animals are spillover hosts rather than being a primary reservoir for these lineages

    Genomic analysis of phylogenetic group B2 extraintestinal pathogenic E. coli causing infections in dogs in Australia

    No full text
    This study investigated the prevalence of extraintestinal pathogenic E. coli (ExPEC)-associated sequence types (STs) from phylogenetic group B2 among 449 fluoroquinolone-susceptible dog clinical isolates from Australia. Isolates underwent PCR-based phylotyping and random amplified polymorphic DNA analysis to determine clonal relatedness. Of the 317 so-identified group B2 isolates, 77 underwent whole genome sequencing (WGS), whereas the remainder underwent PCR-based screening for ST complexes (STc) STc12, STc73, STc372, and ST131. The predominant ST was ST372 according to both WGS (31 % of 77) and ST-specific PCR (22 % of 240), followed by (per WGS) ST73 (17 %), ST12 (7 %), and ST80 (7 %). A WGS-based phylogenetic comparison of ST73 isolates from dogs, cats, and humans showed considerable overall phylogenetic diversity. Although most clusters were species-specific, some contained closely related human and animal (dog > cat) isolates. For dogs in Australia these findings both confirm ST372 as the predominant E. coli clonal lineage causing extraintestinal infections and clarify the importance of human-associated group B2 lineage ST73 as a cause of UTI, with some strains possibly being capable of bi-directional (i.e., dog-human and human-dog) transmission

    Genomic analysis of fluoroquinolone-susceptible phylogenetic group B2 extraintestinal pathogenic Escherichia coli causing infections in cats

    No full text
    Extraintestinal pathogenic Escherichia coli (ExPEC) can cause urinary tract and other types of infection in cats, but the relationship of cat ExPEC to human ExPEC remains equivocal. This study investigated the prevalence of ExPEC-associated sequence types (STs) from phylogenetic group B2 among fluoroquinolone-susceptible cat clinical isolates. For this, 323 fluoroquinolone-susceptible cat clinical E. coli isolates from Australia underwent PCR-based phylotyping and random amplified polymorphic DNA analysis to determine clonal relatedness. Of the 274 group B2 isolates, 53 underwent whole genome sequencing (WGS), whereas 221 underwent PCR-based screening for (group B2) sequence type complexes (STc) STc12, STc73, ST131, and STc372. Group B2 was the dominant phylogenetic group (274/323, 85 %), whereas within group B2 ST73 dominated, according to both WGS (43 % of 53; followed by ST127, ST12, and ST372 [4/53, 8 % each]) and ST-specific PCR (20 % of 221). In WGS-based comparisons of cat and reference human ST73 isolates, cat isolates had a relatively conserved virulence gene profile but were phylogenetically diverse. Although in the phylogram most cat and human ST73 isolates occupied host species-specific clusters within serotype-specific clades (O2:H1, O6:H1, O25:H1, O50/O2:H1), cat and human isolates were intermingled within two serotype-specific clades: O120:H31 (3 cat and 2 human isolates) and O22:H1 (3 cat and 5 human isolates). These findings confirm the importance of human-associated group B2 lineages as a cause of urinary tract infections in cats. The close genetic relationship of some cat and human ST73 strains suggests bi-directional transmission may be possible

    Genomic analysis of fluoroquinolone-susceptible phylogenetic group B2 extraintestinal pathogenic Escherichia coli causing infections in cats

    No full text
    Extraintestinal pathogenic Escherichia coli (ExPEC) can cause urinary tract and other types of infection in cats, but the relationship of cat ExPEC to human ExPEC remains equivocal. This study investigated the prevalence of ExPEC-associated sequence types (STs) from phylogenetic group B2 among fluoroquinolone-susceptible cat clinical isolates. For this, 323 fluoroquinolone-susceptible cat clinical E. coli isolates from Australia underwent PCR-based phylotyping and random amplified polymorphic DNA analysis to determine clonal relatedness. Of the 274 group B2 isolates, 53 underwent whole genome sequencing (WGS), whereas 221 underwent PCR-based screening for (group B2) sequence type complexes (STc) STc12, STc73, ST131, and STc372. Group B2 was the dominant phylogenetic group (274/323, 85 %), whereas within group B2 ST73 dominated, according to both WGS (43 % of 53; followed by ST127, ST12, and ST372 [4/53, 8 % each]) and ST-specific PCR (20 % of 221). In WGS-based comparisons of cat and reference human ST73 isolates, cat isolates had a relatively conserved virulence gene profile but were phylogenetically diverse. Although in the phylogram most cat and human ST73 isolates occupied host species-specific clusters within serotype-specific clades (O2:H1, O6:H1, O25:H1, O50/O2:H1), cat and human isolates were intermingled within two serotype-specific clades: O120:H31 (3 cat and 2 human isolates) and O22:H1 (3 cat and 5 human isolates). These findings confirm the importance of human-associated group B2 lineages as a cause of urinary tract infections in cats. The close genetic relationship of some cat and human ST73 strains suggests bi-directional transmission may be possible.Amanda K. Kidsley, Mark O’Dea, Esmaeil Ebrahimie, Manijeh Mohammadi-Dehcheshmeh, Sugiyono Saputra, David Jordan, James R. Johnson, David Gordon, Conny Turni, Steven P. Djordjevic, Sam Abraham, Darren J. Trot
    corecore