7 research outputs found

    The Smell of Hypoxia: using an electronic nose at altitude and proof of concept of its role in the prediction and diagnosis of acute mountain sickness

    No full text
    Electronic nose (e‐nose) devices may be used to identify volatile organic compounds (VOCs) in exhaled breath. VOCs generated via metabolic processes are candidate biomarkers of (patho)physiological pathways. We explored the feasibility of using an e‐nose to generate human “breathprints” at high altitude. Furthermore, we explored the hypothesis that pathophysiological processes involved in the development of acute mountain sickness (AMS) would manifest as altered VOC profiles. Breath analysis was performed on Sherpa and lowlander trekkers at high altitude (3500 m). The Lake Louise Scoring (LLS) system was used to diagnose AMS. Raw data were reduced by principal component (PC) analysis (PCA). Cross validated linear discriminant analysis (CV‐LDA) and receiver‐operating characteristic area under curve (ROC‐AUC) assessed discriminative function. Breathprints suitable for analysis were obtained from 58% (37/64) of samples. PCA showed significant differences between breathprints from participants with, and without, AMS; CV‐LDA showed correct classification of 83.8%, ROC‐AUC 0.86; PC 1 correlated with AMS severity. There were significant differences between breathprints of participants who remained AMS negative and those whom later developed AMS (CV‐LDA 68.8%, ROC‐AUC 0.76). PCA demonstrated discrimination between Sherpas and lowlanders (CV‐LDA 89.2%, ROC‐AUC 0.936). This study demonstrated the feasibility of breath analysis for VOCs using an e‐nose at high altitude. Furthermore, it provided proof‐of‐concept data supporting e‐nose utility as an objective tool in the prediction and diagnosis of AMS. E‐nose technology may have substantial utility both in altitude medicine and under other circumstances where (mal)adaptation to hypoxia may be important (e.g., critically ill patients)

    Postoperative critical care and high-acuity care provision in the United Kingdom, Australia, and New Zealand

    No full text
    BACKGROUND: Decisions to admit high-risk postoperative patients to critical care may be affected by resource availability. We aimed to quantify adult ICU/high-dependency unit (ICU/HDU) capacity in hospitals from the UK, Australia, and New Zealand (NZ), and to identify and describe additional 'high-acuity' beds capable of managing high-risk patients outside the ICU/HDU environment. METHODS: We used a modified Delphi consensus method to design a survey that was disseminated via investigator networks in the UK, Australia, and NZ. Hospital- and ward-level data were collected, including bed numbers, tertiary services offered, presence of an emergency department, ward staffing levels, and the availability of critical care facilities. RESULTS: We received responses from 257 UK (response rate: 97.7%), 35 Australian (response rate: 32.7%), and 17 NZ (response rate: 94.4%) hospitals (total 309). Of these hospitals, 91.6% reported on-site ICU or HDU facilities. UK hospitals reported fewer critical care beds per 100 hospital beds (median=2.7) compared with Australia (median=3.7) and NZ (median=3.5). Additionally, 31.1% of hospitals reported having high-acuity beds to which high-risk patients were admitted for postoperative management, in addition to standard ICU/HDU facilities. The estimated numbers of critical care beds per 100 000 population were 9.3, 14.1, and 9.1 in the UK, Australia, and NZ, respectively. The estimated per capita high-acuity bed capacities per 100 000 population were 1.2, 3.8, and 6.4 in the UK, Australia, and NZ, respectively. CONCLUSIONS: Postoperative critical care resources differ in the UK, Australia, and NZ. High-acuity beds may have developed to augment the capacity to deliver postoperative critical care

    Heterozygosity of α 1

    No full text
    corecore