216 research outputs found
A multivariate variational objective analysis-assimilation method. Part 2: Case study results with and without satellite data
The variational multivariate assimilation method described in a companion paper by Achtemeier and Ochs is applied to conventional and conventional plus satellite data. Ground-based and space-based meteorological data are weighted according to the respective measurement errors and blended into a data set that is a solution of numerical forms of the two nonlinear horizontal momentum equations, the hydrostatic equation, and an integrated continuity equation for a dry atmosphere. The analyses serve first, to evaluate the accuracy of the model, and second to contrast the analyses with and without satellite data. Evaluation criteria measure the extent to which: (1) the assimilated fields satisfy the dynamical constraints, (2) the assimilated fields depart from the observations, and (3) the assimilated fields are judged to be realistic through pattern analysis. The last criterion requires that the signs, magnitudes, and patterns of the hypersensitive vertical velocity and local tendencies of the horizontal velocity components be physically consistent with respect to the larger scale weather systems
A New Generalized Harmonic Evolution System
A new representation of the Einstein evolution equations is presented that is
first order, linearly degenerate, and symmetric hyperbolic. This new system
uses the generalized harmonic method to specify the coordinates, and
exponentially suppresses all small short-wavelength constraint violations.
Physical and constraint-preserving boundary conditions are derived for this
system, and numerical tests that demonstrate the effectiveness of the
constraint suppression properties and the constraint-preserving boundary
conditions are presented.Comment: Updated to agree with published versio
Improved compression molding technology for continuous fiber reinforced composite laminates. Part 2: AS-4/Polyimidesulfone prepreg system
AS-4/polyimidesulfone (PISO2) composite prepreg was utilized for the improved compression molding technology investigation. This improved technique employed molding stops which advantageously facilitate the escape of volatile by-products during the B-stage curing step, and effectively minimize the neutralization of the consolidating pressure by intimate interply fiber-fiber contact within the laminate in the subsequent molding cycle. Without the modifying the resin matrix properties, composite panels with both unidirectional and angled plies with outstanding C-scans and mechanical properties were successfully molded using moderate molding conditions, i.e., 660 F and 500 psi, using this technique. The size of the panels molded were up to 6.00 x 6.00 x 0.07 in. A consolidation theory was proposed for the understanding and advancement of the processing science. Processing parameters such as vacuum, pressure cycle design, prepreg quality, etc. were explored
Low pressure process for continuous fiber reinforced polyamic acid resin matrix composite laminates
A low pressure processor was developed for preparing a well-consolidated polyimide composite laminate. Prepreg plies were formed from unidirectional fibers and a polyamic acid resin solution. Molding stops were placed at the sides of a matched metal die mold. The prepreg plies were cut shorter than the length of the mold in the in-plane lateral direction and were stacked between the molding stops to a height which was higher than the molding stops. The plies were then compressed to the height of the stops and heated to allow the volatiles to escape and to start the imidization reaction. After removing the stops from the mold, the heat was increased and 0 - 500 psi was applied to complete the imidization reaction. The heat and pressure were further increased to form a consolidated polyimide composite laminate
A variational assimilation method for satellite and conventional data: development of basic model for diagnosis of cyclone systems
In the 1995 ISWS Publications Catalog, the citation for this work is listed as ISWS MP no. 89. A note in the ISWS publications database indicates that ISWS MP 89 was issued as NASA Contractor Report 3981, prepared for George C. Marshall Space Flight Center under Contract NAS8-34902. The ISWS Miscellaneous Publication series statement has been added to the record on the basis of these sources, although there is no reference to the ISWS MP series in the work itself.A summary is presented of the progress toward the completion of a comprehensive diagnostic objective analysis system based upon the calculus of variations. The approach was to first develop the objective analysis subject to the constraints that the final product satisfies the five basic primitive equations for a dry inviscid atmosphere: the two nonlinear horizontal momentum equations, the continuity equation, the hydrostatic equation, and the thermodynamic equation. Then, having derived the basic model, there would be added to it the equations for moist atmospheric processes and the radiative transfer equation.published or submitted for publicationOpe
Project ATLANTA (ATlanta Land-use ANalysis: Temperature and Air quality): A Study of how the Urban Landscape Affects Meteorology and Air Quality Through Time
It is our intent through this investigation to help facilitate measures that can be Project ATLANTA (ATlanta Land-use ANalysis: applied to mitigate climatological or air quality Temperature and Air-quality) is a NASA Earth degradation, or to design alternate measures to sustain Observing System (EOS) Interdisciplinary Science or improve the overall urban environment in the future. investigation that seeks to observe, measure, model, and analyze how the rapid growth of the Atlanta. The primary objectives for this research effort are: 1) To In the last half of the 20th century, Atlanta, investigate and model the relationship between Atlanta Georgia has risen as the premier commercial, urban growth, land cover change, and the development industrial, and transportation urban area of the of the urban heat island phenomenon through time at southeastern United States. The rapid growth of the nested spatial scales from local to regional; 2) To Atlanta area, particularly within the last 25 years, has investigate and model the relationship between Atlanta made Atlanta one of the fastest growing metropolitan urban growth and land cover change on air quality areas in the United States. The population of the through time at nested spatial scales from local to Atlanta metropolitan area increased 27% between 1970 regional; and 3) To model the overall effects of urban and 1980, and 33% between 1980-1990 (Research development on surface energy budget characteristics Atlanta, Inc., 1993). Concomitant with this high rate of across the Atlanta urban landscape through time at population growth, has been an explosive growth in nested spatial scales from local to regional. Our key retail, industrial, commercial, and transportation goal is to derive a better scientific understanding of how services within the Atlanta region. This has resulted in land cover changes associated with urbanization in the tremendous land cover change dynamics within the Atlanta area, principally in transforming forest lands to metropolitan region, wherein urbanization has urban land covers through time, has, and will, effect consumed vast acreas of land adjacent to the city local and regional climate, surface energy flux, and air proper and has pushed the rural/urban fringe farther quality characteristics. Allied with this goal is the and farther away from the original Atlanta urban core. prospect that the results from this research can be An enormous transition of land from forest and applied by urban planners, environmental managers agriculture to urban land uses has occurred in the and other decision-makers, for determining how Atlanta area in the last 25 years, along with subsequent urbanization has impacted the climate and overal
The distribution of radiogenic heat production as a function of depth
Abstract Geochemical analyses and geobarometric determinations have been combined to create a depth vs. radiogenic heat production database for the Sierra Nevada batholith, California. This database shows that mean heat production values first increase, then decrease, with increasing depth. Heat production is~2 AW/m 3 within the~3-km-thick volcanic pile at the top of the batholith, below which it increases to an average value of~3.5 AW/m 3 at~5.5 km depth, then decreases to~0.5-1 AW/m 3 at 15 km depth and remains at these values through the entire crust below 15 km. Below the crust, from depths of~40-125 km, the batholith's root and mantle wedge that coevolved beneath the batholith appears to have an average radiogenic heat production rate of~0.14 AW/m 3 . This is higher than the rates from most published xenolith studies, but reasonable given the presence of crustal components in the arc root assemblages. The pattern of radiogenic heat production interpreted from the depth vs. heat production database is not consistent with the downward-decreasing exponential distribution predicted from modeling of surface heat flow data. The interpreted distribution predicts a reasonable range of geothermal gradients and shows that essentially all of the present day surface heat flow from the Sierra Nevada could be generated within the~35 km thick crust. This requires a very low heat flux from the mantle, which is consistent with a model of cessation of Sierran magmatism during Laramide flat-slab subduction, followed by conductive cooling of the upper mantle for~70 m.y. The heat production variation with depth is principally due to large variations in uranium and thorium concentration; potassium is less variable in concentration within the Sierran crust, and produces relatively little of the heat in high heat production rocks. Because silica content is relatively constant through the upper~30 km of the Sierran batholith, while U, Th, and K concentrations are highly variable, radiogenic heat production does not vary directly with silica content.
Nonlinear Effects In Black Hole Ringdown From Scattering Experiments I: spin and initial data dependence of quadratic mode coupling
We investigate quadratic quasinormal mode coupling in black hole spacetime
through numerical simulations of single perturbed black holes using both
numerical relativity and second-order black hole perturbation theory. Focusing
on the dominant quadrupolar modes, we find good agreement (within
) between these approaches, with discrepancies attributed to
truncation error and uncertainties from mode fitting. Our results align with
earlier studies extracting the coupling coefficients from select binary black
hole merger simulations, showing consistency for the same remnant spins.
Notably, the coupling coefficient is insensitive to a diverse range of initial
data, including configurations that led to a significant (up to ) increase
in the remnant black hole mass. These findings present opportunities for
testing the nonlinear dynamics of general relativity with ground-based
gravitational wave observatories. Lastly, we provide evidence of a bifurcation
in coupling coefficients between counter-rotating and co-rotating quasinormal
modes as black hole spin increases
ANCA-associated renal vasculitis is associated with rurality but not seasonality or deprivation in a complete national cohort study
Background Small studies suggest an association between ANCA-associated vasculitis (AAV) incidence and rurality, seasonality and socioeconomic deprivation. We examined the incidence of kidney biopsy-proven AAV and its relationship with these factors in the adult Scottish population.Methods Using the Scottish Renal Biopsy Registry, all adult native kidney biopsies performed between 2014 and 2018 with a diagnosis of granulomatosis with polyangiitis (GPA) or microscopic polyangiitis (MPA) were identified. The Scottish Government Urban Rural Classification was used for rurality analysis. Seasons were defined as autumn (September–November), winter (December–February), spring (March–May) and summer (June–August). Patients were separated into quintiles of socioeconomic deprivation using the validated Scottish Index of Multiple Deprivation and incidence standardised to age. Estimated glomerular filtration rate and urine protein:creatinine ratio at time of biopsy were used to assess disease severity.Results 339 cases of renal AAV were identified, of which 62% had MPA and 38% had GPA diagnosis. AAV incidence was 15.1 per million population per year (pmp/year). Mean age was 66 years and 54% were female. Incidence of GPA (but not MPA) was positively associated with rurality (5.2, 8.4 and 9.1 pmp/year in ‘urban’, ‘accessible remote’ and ‘rural remote’ areas, respectively; p=0.04). The age-standardised incidence ratio was similar across all quintiles of deprivation (p=ns).Conclusions Seasonality and disease severity did not vary across AAV study groups. In this complete national cohort study, we observed a positive association between kidney biopsy-proven GPA and rurality
- …