219 research outputs found
Tyrosine kinase 2 promotes sepsisâassociated lethality by facilitating production of interleukinâ27
Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/141056/1/jlb0123-sup-0001.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/141056/2/jlb0123.pd
Polydiacetylenic nanofibers as new siRNA vehicles for in vitro and in vivo delivery
Polydiacetylenic nanofibers (PDA-Nfs) obtained by photopolymerization of surfactant 1 were optimized for intracellular delivery of small interfering RNAs (siRNAs). PDA-Nfs/siRNA complexes efficiently silenced the oncogene Lim-1 in the renal cancer cells 786-O in vitro. Intraperitoneal injection of PDA-Nfs/siLim1 downregulated Lim-1 in subcutaneous tumor xenografts obtained with 786-O cells in nude mice. Thus, PDA-Nfs represent an innovative system for in vivo delivery of siRNAs
Glycoproteomics Reveals Decorin Peptides With Anti-Myostatin Activity in Human Atrial Fibrillation.
BACKGROUND: Myocardial fibrosis is a feature of many cardiac diseases. We used proteomics to profile glycoproteins in the human cardiac extracellular matrix (ECM). METHODS: Atrial specimens were analyzed by mass spectrometry after extraction of ECM proteins and enrichment for glycoproteins or glycopeptides. RESULTS: ECM-related glycoproteins were identified in left and right atrial appendages from the same patients. Several known glycosylation sites were confirmed. In addition, putative and novel glycosylation sites were detected. On enrichment for glycoproteins, peptides of the small leucine-rich proteoglycan decorin were identified consistently in the flowthrough. Of all ECM proteins identified, decorin was found to be the most fragmented. Within its protein core, 18 different cleavage sites were identified. In contrast, less cleavage was observed for biglycan, the most closely related proteoglycan. Decorin processing differed between human ventricles and atria and was altered in disease. The C-terminus of decorin, important for the interaction with connective tissue growth factor, was detected predominantly in ventricles in comparison with atria. In contrast, atrial appendages from patients in persistent atrial fibrillation had greater levels of full-length decorin but also harbored a cleavage site that was not found in atrial appendages from patients in sinus rhythm. This cleavage site preceded the N-terminal domain of decorin that controls muscle growth by altering the binding capacity for myostatin. Myostatin expression was decreased in atrial appendages of patients with persistent atrial fibrillation and hearts of decorin null mice. A synthetic peptide corresponding to this decorin region dose-dependently inhibited the response to myostatin in cardiomyocytes and in perfused mouse hearts. CONCLUSIONS: This proteomics study is the first to analyze the human cardiac ECM. Novel processed forms of decorin protein core, uncovered in human atrial appendages, can regulate the local bioavailability of antihypertrophic and profibrotic growth factors
Characterization of monoolein-based lipoplexes using fluorescence spectroscopy
Lipoplexes are commonly used as delivery systems in vitro and in vivo, the role of a neutral lipid as helper being of extreme importance in these systems. Cationic liposomes composed of dioctadecyldimethylammonium bromide (DODAB) with monoolein (MO) as a helper, at different molar ratios (1:2; 1:1 and 1:0.5) were prepared, and subsequently titrated to DNA. The structural and physicochemical properties of the lipid/DNA complexes were assessed by Ethidium Bromide (EtBr) exclusion, 90Âș Static Light Scattering (90Âș SLS) assays and Fluorescence Resonance Energy Transfer (FRET). In EtBr exclusion assays, the steady-state fluorescence spectra of EtBr were decomposed into the sum of two lognormal emissions, emanating from two different environments â H2O and DNA, and the effect of charge ratio (+/-) was observed. 90Âș SLS assays gave an important contribution, detecting size variations in systems with different MO fractions on the lipoplexes. In FRET assays, 2-(3-(diphenylhexatrienyl)propanoyl)-1-hexadecanoyl-sn-glycero-3-phosphocholine (DPH-HPC) was used as donor and EtBr as acceptor. The DNA component previously calculated by EtBr exclusion, was used to determine the energy transfer efficiency, as an indirect measurement of the lipoplexes structural and physicochemical properties. Our results demonstrate that the inclusion of monoolein in the cationic liposomes formulation significantly modifies the rate of DNA complexation, being DODAB:MO (1:1) the system with higher DNA condensation efficiency.Fundação para a CiĂȘncia e a Tecnologia (FCT
- âŠ