3 research outputs found

    The mean electro-motive force, current- and cross-helicity under the influence of rotation, magnetic field and shear

    Full text link
    The mean electromotive force (MEMF) in a rotating stratified magnetohydrodynamical turbulence is studied.Our study rests on the mean-field magnetohydrodynamics framework and τ\tau approximation. We compute the effects of the large-scale magnetic fields (LSMF), global rotation and large-scale shear flow on the different parts of the MEMF (such as α\alpha - effect, turbulent diffusion, turbulent transport, etc.) in an explicit form. The influence of the helical magnetic fluctuations which stem from the small-scale dynamo is taken into account, as well. In the paper, we derive the equation governing the current helicity evolution. It is shown that the joint effect of the differential rotation and magnetic fluctuations in the stratified media can be responsible for the generation, maintenance and redistribution of the current helicity. The implication of the obtained results to astrophysical dynamos is considered as well.Comment: 27 pages, 8 figures, submitted to GAF

    Small-scale magnetic buoyancy and magnetic pumping effects in a turbulent convection

    Get PDF
    We determine the nonlinear drift velocities of the mean magnetic field and nonlinear turbulent magnetic diffusion in a turbulent convection. We show that the nonlinear drift velocities are caused by the three kinds of the inhomogeneities, i.e., inhomogeneous turbulence; the nonuniform fluid density and the nonuniform turbulent heat flux. The inhomogeneous turbulence results in the well-known turbulent diamagnetic and paramagnetic velocities. The nonlinear drift velocities of the mean magnetic field cause the small-scale magnetic buoyancy and magnetic pumping effects in the turbulent convection. These phenomena are different from the large-scale magnetic buoyancy and magnetic pumping effects which are due to the effect of the mean magnetic field on the large-scale density stratified fluid flow. The small-scale magnetic buoyancy and magnetic pumping can be stronger than these large-scale effects when the mean magnetic field is smaller than the equipartition field. We discuss the small-scale magnetic buoyancy and magnetic pumping effects in the context of the solar and stellar turbulent convection. We demonstrate also that the nonlinear turbulent magnetic diffusion in the turbulent convection is anisotropic even for a weak mean magnetic field. In particular, it is enhanced in the radial direction. The magnetic fluctuations due to the small-scale dynamo increase the turbulent magnetic diffusion of the toroidal component of the mean magnetic field, while they do not affect the turbulent magnetic diffusion of the poloidal field.Comment: 13 pages, 4 figure, REVTEX4, Geophysical and Astrophysical Fluid Dynamics, in pres
    corecore