3 research outputs found

    Evaluating the presence and introgression of the hybrid forest pathogen Cronartium x flexili

    No full text
    The recent discovery of a hybrid forest fungal pathogen, Cronartium x flexili, suggested to have arisen from sexual hybridization between the introduced C. ribicola and the native C. comandrae, was surprising because the parental species do not share hosts. Although the pathosystems of both parental species are well described, the impact of their hybridization is yet unknown. The purpose of this study is to determine the occurrence, level of hybridization and introgression of the hybrid pine stem rust Cronartium x flexili. A total of 831 samples from dikaryotic aecia of C. ribicola and C. comandrae were collected from 13 sites across British Columbia and Alberta and analysed both genetically and morphologically over two sampling seasons. Microscopic and genetic methods, including PCR, qPCR, and genotyping by sequencing (GBS), were used to identify hybrid samples. The results of these analyses indicate that C. x flexili is either no longer prevalent in areas where it was previously found, or else prevalent at such low frequencies that it has evaded detection in the sampling effort of this study. Two previously collected and extracted C. x flexili DNA samples were examined using a fixed loci analysis and did not demonstrate evidence of introgression, indicating that this hybrid does not facilitate gene flow between the introduced C. ribicola and the native C. comandrae. This suggests that when a hybridization event occurs between the parental Cronartium spp., first generation (F1) hybrids result but are not fertile and do not occur perennially. Some evidence suggests that this could be due to a number of factors including: low relative fitness of C. x flexili compared to the parental species if ‘hybrid breakdown’ occurs as explained by the Bateson-Dobzhansky-Muller incompatibility (BDMI) model; variations in local climate factors influencing life cycle parameters; or sexual incompatibility with the parental species. This work adds to the limited literature on the genetics of hybrid forest fungal pathogens and improves our understanding of the evolutionary mechanisms occurring when allopatrically evolved forest fungal species hybridize.Forestry, Faculty ofGraduat

    In Situ Processing and Efficient Environmental Detection (iSPEED) of tree pests and pathogens using point-of-use real-time PCR.

    No full text
    Global trade and climate change are responsible for a surge in foreign invasive species and emerging pests and pathogens across the world. Early detection and surveillance activities are essential to monitor the environment and prevent or mitigate future ecosystem impacts. Molecular diagnostics by DNA testing has become an integral part of this process. However, for environmental applications, there is a need for cost-effective and efficient point-of-use DNA testing to obtain accurate results from remote sites in real-time. This requires the development of simple and fast sample processing and DNA extraction, room-temperature stable reagents and a portable instrument. We developed a point-of-use real-time Polymerase Chain Reaction system using a crude buffer-based DNA extraction protocol and lyophilized, pre-made, reactions for on-site applications. We demonstrate the use of this approach with pathogens and pests covering a broad spectrum of known undesirable forest enemies: the fungi Sphaerulina musiva, Cronartium ribicola and Cronartium comandrae, the oomycete Phytophthora ramorum and the insect Lymantria dispar. We obtained positive DNA identification from a variety of different tissues, including infected leaves, pathogen spores, or insect legs and antenna. The assays were accurate and yielded no false positive nor negative. The shelf-life of the lyophilized reactions was confirmed after one year at room temperature. Finally, successful tests conducted with portable thermocyclers and disposable instruments demonstrate the suitability of the method, named in Situ Processing and Efficient Environmental Detection (iSPEED), for field testing. This kit fits in a backpack and can be carried to remote locations for accurate and rapid detection of pests and pathogens

    SARS-CoV-2 vaccination modelling for safe surgery to save lives: data from an international prospective cohort study

    No full text
    Background: Preoperative SARS-CoV-2 vaccination could support safer elective surgery. Vaccine numbers are limited so this study aimed to inform their prioritization by modelling. Methods: The primary outcome was the number needed to vaccinate (NNV) to prevent one COVID-19-related death in 1 year. NNVs were based on postoperative SARS-CoV-2 rates and mortality in an international cohort study (surgical patients), and community SARS-CoV-2 incidence and case fatality data (general population). NNV estimates were stratified by age (18-49, 50-69, 70 or more years) and type of surgery. Best- and worst-case scenarios were used to describe uncertainty. Results: NNVs were more favourable in surgical patients than the general population. The most favourable NNVs were in patients aged 70 years or more needing cancer surgery (351; best case 196, worst case 816) or non-cancer surgery (733; best case 407, worst case 1664). Both exceeded the NNV in the general population (1840; best case 1196, worst case 3066). NNVs for surgical patients remained favourable at a range of SARS-CoV-2 incidence rates in sensitivity analysis modelling. Globally, prioritizing preoperative vaccination of patients needing elective surgery ahead of the general population could prevent an additional 58 687 (best case 115 007, worst case 20 177) COVID-19-related deaths in 1 year. Conclusion: As global roll out of SARS-CoV-2 vaccination proceeds, patients needing elective surgery should be prioritized ahead of the general population
    corecore