3,387 research outputs found
Interpreting positive signs of the supraspinatus test in screening for torn rotator cuff.
The purpose of this study was to investigate the validity of the supraspinatus test as a screening test for detecting torn rotator cuff and to determine what its valuable positive signs were. Both the empty-can test and full-can test were performed on 200 shoulders diagnosed by magnetic resonance imaging (MRI)-and in some cases, surgical findings-to have full-thickness or partial-thickness torn rotator cuff s, or no tear in the rotator cuff . During the maneuver, the presence of pain or weakness or both pain and weakness were recorded as positive signs, and the distribution of these signs were analyzed according to the degree of tear. The predictive values were calculated in 2 ways by considering (1) only full-thickness tears as tears and (2) both full- and partial-thickness tears as tears. The 2 tests and the 2 ways of considering partial-thickness tears were compared. Pain and weakness were severity-dependent, and the empty-can test had a higher incidence of pain. The sensitivities of the 2 supraspinatus tests in all positive signs were higher when including partial-thickness tears in the tear group ; however, their specificities were higher when excluding partial-thickness tears. Both pain and weakness were interpretive for the supraspinatus test, and both tests were sensitive to full- and partial- thickness tears and specific for full-thickness tears
Optofluidic ring resonator laser with an edible liquid laser gain medium
We demonstrate a biocompatible optofluidic laser with an edible liquid laser gain medium, made of riboflavin dissolved in water. The proposed laser platform is based on a pulled-glass-capillary optofluidic ring resonator (OFRR) with a high Q-factor, resulting in a lasing threshold comparable to that of conventional organic dye lasers that are mostly harmful, despite the relatively low quantum yield of the riboflavin. The proposed biocompatible laser can be realized by not only a capillary OFRR, but also by an optical-fiber-based OFRR that offers improved mechanical stability, and is promising technology for application to in vivo bio-sensing
Measurement of beta-amyloid peptides in specific cells using a photo thin-film transistor
The existence of beta-amyloid [Aβ] peptides in the brain has been regarded as the most archetypal biomarker of Alzheimer's disease [AD]. Recently, an early clinical diagnosis has been considered a great importance in identifying people who are at high risk of AD. However, no microscale electronic sensing devices for the detection of Aβ peptides have been developed yet. In this study, we propose an effective method to evaluate a small quantity of Aβ peptides labeled with fluorescein isothiocyanate [FITC] using a photosensitive field-effect transistor [p-FET] with an on-chip single-layer optical filter. To accurately evaluate the quantity of Aβ peptides within the cells cultured on the p-FET device, we measured the photocurrents which resulted from the FITC-conjugated Aβ peptides expressed from the cells and measured the number of photons of the fluorochrome in the cells using a photomultiplier tube. Thus, we evaluated the correlation between the generated photocurrents and the number of emitted photons. We also evaluated the correlation between the number of emitted photons and the amount of FITC by measuring the FITC volume using AFM. Finally, we estimated the quantity of Aβ peptides of the cells placed on the p-FET sensing area on the basis of the binding ratio between FITC molecules and Aβ peptides
Phosmet: O,O-dimethyl S-phthalimidomethyl phosphorodithioate
In the title compound, C11H12NO4PS2, the dihedral angle between the phthalimidyl ring plane and the PS2 plane of the phosphorodithioate group is 60.41 (3)°. In the crystal structure, weak intermolecular C—H⋯O hydrogen bonds and S⋯S interactions [3.3825 (9) Å] contribute to the stabilization of the packing
- …