720 research outputs found
Cooper-Pair Spin Current in a Strontium Ruthenate Heterostructure
It has been recognized that the condensation of spin-triplet Cooper pairs
requires not only the broken gauge symmetry but also the spin ordering as well.
One consequence of this is the possibility of the Cooper-pair spin current
analogous to the magnon spin current in magnetic insulators, the analogy also
extending to the existence of the Gilbert damping of the collective
spin-triplet dynamics. The recently fabricated heterostructure of the thin film
of the itinerant ferromagnet SrRuO3 on the bulk Sr2RuO4, the best-known
candidate material for the spin-triplet superconductor, offers a promising
platform for generating such spin current. We will show how such
heterostructure allows us to not only realize the long-range spin valve but
also electrically drive the collective spin mode of the spin-triplet order
parameter. Our proposal represents both a new realization of the spin
superfluidity and a transport signature of the spin-triplet superconductivity.Comment: 5 pages, 3 figure
Magnon topology and thermal Hall effect in trimerized triangular lattice antiferromagnet
The non-trivial magnon band topology and its consequent responses have been
extensively studied in two-dimensional magnetisms. However, the triangular
lattice antiferromagnet (TLAF), the best-known frustrated two-dimensional
magnet, has received less attention than the closely related Kagome system,
because of the spin-chirality cancellation in the umbrella ground state of the
undistorted TLAF. In this work, we study the band topology and the thermal Hall
effect (THE) of the TLAF with (anti-)trimerization distortion under the
external perpendicular magnetic field using the linearized spin wave theory. We
show that the spin-chirality cancellation is removed in such case, giving rise
to the non-trivial magnon band topology and the finite THE. Moreover, the
magnon bands exhibit band topology transitions tuned by the magnetic field. We
demonstrate that such transitions are accompanied by the logarithmic divergence
of the first derivative of the thermal Hall conductivity. Finally, we examine
the above consequences by calculating the THE in the hexagonal manganite
YMnO, well known to have anti-trimerization.Comment: 6 + 7 pages, 3 + 5 figures, 0 + 1 table; Journal reference adde
Dynamic experiment of active accelerator pedal system with a coreless tubular electromagnetic linear actuator
An automobile active accelerator pedal (AAP) warns the driver about an emergency. A tubular electromagnetic linear actuator is the key component to create an impact or vibration, but it has a large cogging force due to a steel core that causes instabilities. Accordingly, we propose an AAP with a coreless tubular electromagnetic linear actuator, and verify its performance using dynamic experiments
Horizontal linear vibrating actuator to reduce smart phone thickness
Smart phones have numerous features and large display. In result, the smart phone is less portable than before due to its large size. In order to improve the portability of a smart phone, the thickness of the smart phone should be reduced. This is one of the important issues in today's smart phone hardware industry. The vibrating actuator is the thickest component in a smart phone. A thinner electric vibration actuator could make smart phones slimmer. Currently, a vertical linear vibrating actuator is used in smart phones, and it vibrates in the thickness direction of the phone. This imposes a restriction on the sliming of smart phones. Also, a vertical actuator has a thickness of approximately 3.0 to 3.6Â mm. We develop a horizontal linear vibrating actuator that can be used to reduce the thickness of a smart phone. Mathematical vibration modeling is used to calculate the magnetic force, and a finite element analysis using the commercial electromagnetic analysis software MAXWELL is performed to determine the specifications of a permanent magnet and electromagnetic coil. The guide spring is designed by modal and harmonic response analysis using ANSYS. A horizontal linear vibrating actuator is designed, and a prototype is manufactured for use in experiments. Its thickness is reduced by 30Â % compared to a vertical linear vibrating actuator. In addition, the actuator can vibrate with an acceleration of up to 2.10 Gravity (G), which represents an improvement of at least 40Â % compared to a vertical linear vibrating actuator
Competing states for the fractional quantum Hall effect in the 1/3-filled second Landau level
In this work, we investigate the nature of the fractional quantum Hall state
in the 1/3-filled second Landau level (SLL) at filling factor (and
8/3 in the presence of the particle-hole symmetry) via exact diagonalization in
both torus and spherical geometries. Specifically, we compute the overlap
between the exact 7/3 ground state and various competing states including (i)
the Laughlin state, (ii) the fermionic Haffnian state, (iii) the
antisymmetrized product state of two composite fermion seas at 1/6 filling, and
(iv) the particle-hole (PH) conjugate of the parafermion state. All these
trial states are constructed according to a guiding principle called the
bilayer mapping approach, where a trial state is obtained as the
antisymmetrized projection of a bilayer quantum Hall state with interlayer
distance as a variational parameter. Under the proper understanding of the
ground-state degeneracy in the torus geometry, the parafermion state can
be obtained as the antisymmetrized projection of the Halperin (330) state.
Similarly, it is proved in this work that the fermionic Haffnian state can be
obtained as the antisymmetrized projection of the Halperin (551) state. It is
shown that, while extremely accurate at sufficiently large positive Haldane
pseudopotential variation , the Laughlin state loses its
overlap with the exact 7/3 ground state significantly at . At slightly negative , it is shown that the
PH-conjugated parafermion state has a substantial overlap with the exact
7/3 ground state, which is the highest among the above four trial states.Comment: 22 pages, 5 figure
AN ANALYSIS OF 500 M INLINE SKATE STARTING MOTIONS
The purpose of this study was to examine if there are kinematical variables differences between national representative players (NRP) and non national representative players (NNRP) during 500 m inline skate starting motion. Four NRP and six NNRP were recruited for the study. Each subject executed starting motion five times on a 2x12 m
start way in a gymnasium. Kinematical variables were analyzed by the three-dimensional motion analysis system (60Hz). It was hypothesized that there are time and center of
mass acceleration differences in starting phase between groups since starting phase has been considered important in sprinting. The results showed that the NRP had significantly
shorter starting phase time than that of NNRP
Power Management of Nanogrid Cluster with P2P Electricity Trading Based on Future Trends of Load Demand and PV Power Production
This paper presents the power management of the nanogrid clusters assisted by
a novel peer-to-peer(P2P) electricity trading. In our work, unbalance of power
consumption among clusters is mitigated by the proposed P2P trading method. For
power management of individual clusters, multi-objective optimization
simultaneously minimizing total power consumption, portion of grid power
consumption, and total delay incurred by scheduling is attempted. A renewable
power source photovoltaic(PV) system is adopted for each cluster as a secondary
source. The temporal surplus of self-supply PV power of a cluster can be sold
through P2P trading to another cluster (s) experiencing temporal power
shortage. The cluster in temporal shortage of electric power buys the PV power
to reduce peak load and total delay. In P2P trading, a cooperative game model
is used for buyers and sellers to maximize their welfare. To increase P2P
trading efficiency, future trends of load demand and PV power production are
considered for power management of each cluster to resolve instantaneous
unbalance between load demand and PV power production. To this end, a gated
recurrent unit network is used to forecast future load demand and future PV
power production. Simulations verify the effectiveness of the proposed P2P
trading for nanogrid clusters.Comment: This article is submitted for publication in Sustainable Cities and
Societ
- …