387 research outputs found
Quantification of The Performance of CMIP6 Models for Dynamic Downscaling in The North Pacific and Northwest Pacific Oceans
Selecting a reliable global climate model as the driving forcing in simulations with dynamic downscaling is critical for obtaining a reliable regional ocean climate. With respect to their accuracy in providing physical quantities and long-term trends, we quantify the performances of 17 models from the Coupled Model Inter-comparison Project Phase 6 (CMIP6) over the North Pacific (NP) and Northwest Pacific (NWP) oceans for 1979–2014. Based on normalized evaluation measures, each model’s performance for a physical quantity is mainly quantified by the performance score (PS), which ranges from 0 to 100. Overall, the CMIP6 models reasonably reproduce the physical quantities of the driving variables and the warming ocean heat content and temperature trends. However, their performances significantly depend on the variables and region analyzed. The EC-Earth-Veg and CNRM-CM6-1 models show the best performances for the NP and NWP oceans, respectively, with the highest PS values of 85.89 and 76.97, respectively. The EC-Earth3 model series are less sensitive to the driving variables in the NP ocean, as reflected in their PS. The model performance is significantly dependent on the driving variables in the NWP ocean. Nevertheless, providing a better physical quantity does not correlate with a better performance for trend. However, MRI-ESM2-0 model shows a high performance for the physical quantity in the NWP ocean with warming trends similar to references, and it could thus be used as an appropriate driving forcing in dynamic downscaling of this ocean. This study provides objective information for studies involving dynamic downscaling of the NP and NWP oceans
A novel family VII esterase with industrial potential from compost metagenomic library
<p>Abstract</p> <p>Background</p> <p>Among the vast microbial genomic resources now available, most microbes are unculturable in the laboratory. A culture-independent metagenomic approach is a novel technique that circumvents this culture limitation. For the screening of novel lipolytic enzymes, a metagenomic library was constructed from compost, and the clone of <it>estCS2 </it>was selected for lipolytic properties on a tributyrin-containing medium.</p> <p>Results</p> <p>The <it>estCS2 </it>sequence encodes a protein of 570 amino acid residues, with a predicted molecular mass of 63 kDa, and based on amino acid identity it most closely matches (45%) the carboxylesterase from <it>Haliangium ochraceum </it>DSM 14365. EstCS2 belong to family VII, according to the lipolytic enzyme classification proposed by Arpigny and Jaeger, and it retains the catalytic triad Ser<sub>245</sub>-Glu<sub>363</sub>-His<sub>466 </sub>that is typical of an α/β hydrolase. The Ser<sub>245 </sub>residue in the catalytic triad of EstCS2 is located in the consensus active site motif GXSXG. The EstCS2 exhibits strong activity toward <it>p</it>-nitrophenyl caproate (C6), and it is stable up to 60°C with an optimal enzymatic activity at 55°C. The maximal activity is observed at pH 9, and it remains active between pH 6-10. EstCS2 shows remarkable stability in up to 50% (v/v) dimethyl sulfoxide (DMSO) or dimethylformamide (DMF). The enzyme has the ability to cleave sterically hindered esters of tertiary alcohol, as well as to degrade polyurethanes, which are widely used in various industries.</p> <p>Conclusions</p> <p>The high stability of EstCS2 in organic solvents and its activity towards esters of ketoprofen and tertiary alcohols, and in polyurethane suggests that it has potential uses for many applications in biotransformation and bioremediation.</p
Characteristics of P wave in Patients with Sinus Rhythm after Maze Operation
Maze operation could alter P wave morphology in electrocardiogram (ECG), which might prevent exact diagnosis of the cardiac rhythm of patients. However, characteristics of P wave in patients with sinus rhythm after the operation have not been elucidated systematically. Consecutive patients who underwent the modified Cox Maze operation from January to December 2007 were enrolled. The standard 12-lead ECG and echocardiography were evaluated in patients who had sinus rhythm at 6 months after the operation. The average axis of P wave was 65±30 degrees. The average amplitude of P wave was less than 0.1 mV in all 12-leads, with highest amplitude in V1. The most common morphology of P wave was monophasic with positive polarity (49%), except aVR lead, which was different from those in patients with enlarged left atrium, characterized by large P-terminal force in the lead V1. There were no significant differences in P-wave characteristics and echocardiographic parameters between patients with LA activity (30.6%) versus without LA activity (69.4%) at 6 months after the operation. In conclusion, the morphology of P wave in patients after Maze operation shows loss of typical ECG pattern of P mitrale: P wave morphology is small in amplitude, monophasic and with positive polarity
A Case of Postoperative Tuberculous Spondylitis with a Bizarre Course
Postoperative infections following spine surgery are usually attributable to bacterial organisms. Staphylococcus aureus is known to be the most common single pathogen leading to this infection, and the number of infections caused by methicillin-resistant Staphylococcus aureus is increasing. However, there is a paucity of literature addressing postoperative infection with Mycobacterium tuberculosis. We encountered a case of tuberculous spondylitis after spine surgery. A man had fever with low back pain three weeks after posterior interbody fusion with instrumentation for a herniated intervertebral disc at the L4-L5 level. He had been treated with antibiotics for an extended period of time under the impression that he had a bacterial infection, but his symptoms and laboratory data had not improved. Polymerase chain reaction for Mycobacterium tuberculosis turned out to be positive. The patient's symptoms finally improved when he was treated with antituberculosis medication
Predicting the Interactome of Xanthomonas oryzae pathovar oryzae for target selection and DB service
<p>Abstract</p> <p>Background</p> <p>Protein-protein interactions (PPIs) play key roles in various cellular functions. In addition, some critical inter-species interactions such as host-pathogen interactions and pathogenicity occur through PPIs. Phytopathogenic bacteria infect hosts through attachment to host tissue, enzyme secretion, exopolysaccharides production, toxins release, iron acquisition, and effector proteins secretion. Many such mechanisms involve some kind of protein-protein interaction in hosts. Our first aim was to predict the whole protein interaction pairs (interactome) of <it>Xanthomonas oryzae </it>pathovar oryzae (Xoo) that is an important pathogenic bacterium that causes bacterial blight (BB) in rice. We developed a detection protocol to find possibly interacting proteins in its host using whole genome PPI prediction algorithms. The second aim was to build a DB server and a bioinformatic procedure for finding target proteins in Xoo for developing pesticides that block host-pathogen protein interactions within critical biochemical pathways.</p> <p>Description</p> <p>A PPI network in Xoo proteome was predicted by bioinformatics algorithms: PSIMAP, PEIMAP, and iPfam. We present the resultant species specific interaction network and host-pathogen interaction, XooNET. It is a comprehensive predicted initial PPI data for Xoo. XooNET can be used by experimentalists to pick up protein targets for blocking pathological interactions. XooNET uses most of the major types of PPI algorithms. They are: 1) Protein Structural Interactome MAP (PSIMAP), a method using structural domain of SCOP, 2) Protein Experimental Interactome MAP (PEIMAP), a common method using public resources of experimental protein interaction information such as HPRD, BIND, DIP, MINT, IntAct, and BioGrid, and 3) Domain-domain interactions, a method using Pfam domains such as iPfam. Additionally, XooNET provides information on network properties of the Xoo interactome.</p> <p>Conclusion</p> <p>XooNET is an open and free public database server for protein interaction information for Xoo. It contains 4,538 proteins and 26,932 possible interactions consisting of 18,503 (PSIMAP), 3,118 (PEIMAP), and 8,938 (iPfam) pairs. In addition, XooNET provides 3,407 possible interaction pairs between two sets of proteins; 141 Xoo proteins that are predicted as membrane proteins and rice proteomes. The resultant interacting partners of a query protein can be easily retrieved by users as well as the interaction networks in graphical web interfaces. XooNET is freely available from <url>http://bioportal.kobic.kr/XooNET/</url>.</p
Volumetric change of the latissimus dorsi muscle after immediate breast reconstruction with an extended latissimus dorsi musculocutaneous flap
Background In immediate breast reconstruction using an extended latissimus dorsi musculocutaneous (eLDMC) flap, the volume of the flap decreases, which causes a secondary deformity of the breast shape. Since little research has investigated this decrease in muscle volume, the authors conducted an objective study to characterize the decrease in muscle volume after breast reconstruction using an eLDMC flap. Methods Research was conducted from October 2011 to November 2016. The subjects included 23 patients who underwent mastectomy due to breast cancer, received immediate reconstruction using an eLDMC flap without any adjuvant chemotherapy or radiotherapy, and received a computed tomography (CT) scan from days 7 to 10 after surgery and 6 to 8 months postoperatively. In 10 patients, an additional CT scan was conducted 18 months postoperatively. Axial CT scans were utilized to measure the volumetric change of the latissimus dorsi muscle during the follow-up period. Results In the 23 patients, an average decrease of 54.5% was observed in the latissimus dorsi muscle volume between the images obtained immediately postoperatively and the scans obtained 6 to 8 months after surgery. Ten patients showed an average additional decrease of 11.9% from 6–8 months to 18 months after surgery. Conclusions We studied changes in the volume of the latissimus dorsi muscle after surgery using an eLDMC flap performed after a mastectomy without adjuvant chemotherapy or radiotherapy. In this study, we found that immediate breast reconstruction using a latissimus dorsi muscle flap led to a decrease in muscle volume of up to 50%
- …