1,422 research outputs found

    How To Determine SUSY Mass Scales Now

    Full text link
    Currently available experimental data from electroweak precision observables (EWPO), B-physics observables (BPO) and cosmological data can be combined to extract the preferred value of SUSY mass scales. We review recent results on the predictions of the masses of supersymmetric particles and the indirect determination of the lightest Higgs boson mass. Special emphasis is put on models going beyond the Constrained Minimal Supersymmetric Standard Model (CMSSM), such as the Non-Universal Higgs Model type I (NUHM1), or gauge and anomaloy mediated SUSY breaking.Comment: 6 pages, 6 figures, plenary talk given at SUSY08, Seoul, Kore

    Selecting Finite Unified Theories with Current Data

    Full text link
    Finite Unified Theories (FUTs) are N=1 supersymmetric Grand Unified Theories that can be made all-loop finite, leading to a severe reduction of the free parameters. We review the investigation of FUTs based on SU(5) in the context of low-energy phenomenology observables. Using the restrictions from the top and bottom quark masses, it is possible to discriminate between different models. Including further low-energy constraints such as B-physics observables, the bound on the lightest Higgs boson mass and the cold dark matter density, we derive the predictions for the supersymmetric particle spectrum and the prospects for discoveries at the LHC.Comment: 3 pages, 3 figures, talk given at SUSY08, Seoul, Kore

    Discovery Reach of Charged MSSM Higgs Bosons at CMS

    Full text link
    We review the 5 sigma discovery contours for the charged MSSM Higgs boson at the CMS experiment with 30/fb for the two cases M_H+ m_t. In order to analyze the search reach we combine the latest results for the CMS experimental sensitivities based on full simulation studies with state-of-the-art theoretical predictions of MSSM Higgs-boson production and decay properties. Special emphasis is put on the SUSY parameter dependence of the 5 sigma contours. The variation of μ\mu can shift the prospective discovery reach in tan_beta by up to Delta tan_beta = 40.Comment: 3 pages, 2 figures, talk given at SUSY08, Seoul, Kore

    High Temperature Superfluid and Feshbach Resonance

    Full text link
    We study an effective field theory describing cold fermionic atoms near a Feshbach resonance. The theory gives a unique description of the dynamics in the limit that the energy of the Feshbach resonance is tuned to be twice that of the Fermi surface. We show that in this limit the zero temperature superfluid condensate is of order the Fermi energy, and obtain a critical temperature TC0.43TFT_C \simeq 0.43 T_FComment: 9 pages, 3 figures, RevTe

    Signatures for doubly-charged Higgsinos at colliders

    Get PDF
    Several supersymmetric models with extended gauge structures predict light doubly-charged Higgsinos. Their distinctive signature at the large hadron collider is highlighted by studying their production and decay characteristics.Comment: 3 pages, 4 figures, Latex. Submitted for SUSY 2008 proceeding

    Positivity of High Density Effective Theory

    Get PDF
    We show that the effective field theory of low energy modes in dense QCD has positive Euclidean path integral measure. The complexity of the measure of QCD at finite chemical potential can be ascribed to modes which are irrelevant to the dynamics at sufficiently high density. Rigorous inequalities follow at asymptotic density. Lattice simulation of dense QCD should be possible using the quark determinant calculated in the effective theory.Comment: 10 pages, Revised version, to appear in Rapid Communications of Physical Review

    New Developments in MadGraph/MadEvent

    Full text link
    We here present some recent developments of MadGraph/MadEvent since the latest published version, 4.0. These developments include: Jet matching with Pythia parton showers for both Standard Model and Beyond the Standard Model processes, decay chain functionality, decay width calculation and decay simulation, process generation for the Grid, a package for calculation of quarkonium amplitudes, calculation of Matrix Element weights for experimental events, automatic dipole subtraction for next-to-leading order calculations, and an interface to FeynRules, a package for automatic calculation of Feynman rules and model files from the Lagrangian of any New Physics model.Comment: 6 pages, 3 figures. Plenary talk given at SUSY08, Seoul, South Korea, June 2008. To appear in the proceeding
    corecore