3 research outputs found
On a Method of Solving Integral Equation of Carleman Type on the Pair of Segments
Π Π°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°Π΅ΡΡΡ ΠΌΠ΅ΡΠΎΠ΄ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΈΠ½ΡΠ΅Π³ΡΠ°Π»ΡΠ½ΡΡ
ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ ΡΠΈΠΏΠ° ΠΠ°ΡΠ»Π΅ΠΌΠ°Π½Π° Π½Π° ΠΏΠ°ΡΠ΅ ΡΠΌΠ΅ΠΆΠ½ΡΡ
ΠΈ Π½Π΅ΠΏΠ΅ΡΠ΅ΡΠ΅ΠΊΠ°ΡΡΠΈΡ
ΡΡ ΠΎΡΡΠ΅Π·ΠΊΠΎΠ². The method is considered of solving integral equations of Carleman type on the pair of adjacent and disjoint segments
On a solution Method for the Riemann problem with two pairs of unknown functions
The solution of the Riemann problem with a piecewise constant matrix is constructed. The obtained result is expressed in terms of solutions of a differential equation of Fuchs class. To construct the corresponding differential equation a method of logarithmization of the matrix product is proposed. ΠΠΎΡΡΡΠΎΠ΅Π½ΠΎ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ Π·Π°Π΄Π°ΡΠΈ Π ΠΈΠΌΠ°Π½Π° Ρ ΠΊΡΡΠΎΡΠ½ΠΎ-ΠΏΠΎΡΡΠΎΡΠ½Π½ΠΎΠΉ ΠΌΠ°ΡΡΠΈΡΠ΅ΠΉ. ΠΠΎΠ»ΡΡΠ΅Π½Π½ΡΠΉ ΡΠ΅Π·ΡΠ»ΡΡΠ°Ρ Π²ΡΡΠ°ΠΆΠ°Π΅ΡΡΡ Π² ΡΠ΅ΡΠΌΠΈΠ½Π°Ρ
ΡΠ΅ΡΠ΅Π½ΠΈΠΉ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΠΊΠ»Π°ΡΡΠ° Π€ΡΠΊΡΠ°. ΠΠ»Ρ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΡ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠ΅Π³ΠΎ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΠΏΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½ ΠΌΠ΅ΡΠΎΠ΄ Π»ΠΎΠ³Π°ΡΠΈΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΌΠ°ΡΡΠΈΡΠ½ΠΎΠ³ΠΎ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ
ΠΠ± ΠΎΠ΄Π½ΠΎΠΌ ΠΏΠΎΠ΄Ρ ΠΎΠ΄Π΅ ΠΊ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΡΠΌΠ΅ΡΠ°Π½Π½ΡΡ Π·Π°Π΄Π°Ρ ΡΠ΅ΠΎΡΠΈΠΈ ΡΠΏΡΡΠ³ΠΎΡΡΠΈ
Herein, a miscellaneous contact problem of the theory of elasticity in the upper half-plane is considered. The boundary is a real semi-axis separated into four parts, on each of which the boundary conditions are set for the real or imaginary part of two desired analytical functions. Using new unknown functions, the problem is reduced to an inhomogeneous Riemann boundary value problem with a piecewise constant 2 Γ 2 matrix and four singular points. A diο¬erential equation of the Fuchs class with four singular points is constructed, the residue matrices of which are found by the logarithm method of the product of matrices. The single solution of the problem is represented in terms of Cauchy-type integrals when the solvability condition is met.Π Π°ΡΡΠΌΠΎΡΡΠ΅Π½Π° ΡΠΌΠ΅ΡΠ°Π½Π½Π°Ρ ΠΊΠΎΠ½ΡΠ°ΠΊΡΠ½Π°Ρ Π·Π°Π΄Π°ΡΠ° ΡΠ΅ΠΎΡΠΈΠΈ ΡΠΏΡΡΠ³ΠΎΡΡΠΈ Π² Π²Π΅ΡΡ
Π½Π΅ΠΉ ΠΏΠΎΠ»ΡΠΏΠ»ΠΎΡΠΊΠΎΡΡΠΈ. ΠΡΠ°Π½ΠΈΡΠ΅ΠΉ ΡΠ²Π»ΡΠ΅ΡΡΡ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½Π°Ρ ΠΏΠΎΠ»ΡΠΎΡΡ, ΡΠ°Π·Π΄Π΅Π»Π΅Π½Π½Π°Ρ Π½Π° ΡΠ΅ΡΡΡΠ΅ ΡΠ°ΡΡΠΈ, Π½Π° ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΠΈΠ· ΠΊΠΎΡΠΎΡΡΡ
Π·Π°Π΄Π°Π½Ρ Π³ΡΠ°Π½ΠΈΡΠ½ΡΠ΅ ΡΡΠ»ΠΎΠ²ΠΈΡ Π΄Π»Ρ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΠΎΠΉ ΠΈΠ»ΠΈ ΠΌΠ½ΠΈΠΌΠΎΠΉ ΡΠ°ΡΡΠΈ Π΄Π²ΡΡ
ΠΈΡΠΊΠΎΠΌΡΡ
Π°Π½Π°Π»ΠΈΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΡΠ½ΠΊΡΠΈΠΉ. Π‘ ΠΏΠΎΠΌΠΎΡΡΡ Π½ΠΎΠ²ΡΡ
Π½Π΅ΠΈΠ·Π²Π΅ΡΡΠ½ΡΡ
ΡΡΠ½ΠΊΡΠΈΠΉ Π·Π°Π΄Π°ΡΠ° ΡΠ²Π΅Π΄Π΅Π½Π° ΠΊ Π½Π΅ΠΎΠ΄Π½ΠΎΡΠΎΠ΄Π½ΠΎΠΉ ΠΊΡΠ°Π΅Π²ΠΎΠΉ Π·Π°Π΄Π°ΡΠ΅ Π ΠΈΠΌΠ°Π½Π° Ρ 2 Γ 2 ΠΊΡΡΠΎΡΠ½ΠΎ-ΠΏΠΎΡΡΠΎΡΠ½Π½ΠΎΠΉ ΠΌΠ°ΡΡΠΈΡΠ΅ΠΉ ΠΈ ΡΠ΅ΡΡΡΡΠΌΡ ΠΎΡΠΎΠ±ΡΠΌΠΈ ΡΠΎΡΠΊΠ°ΠΌΠΈ. ΠΠΎΡΡΡΠΎΠ΅Π½ΠΎ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΊΠ»Π°ΡΡΠ° Π€ΡΠΊΡΠ° Ρ ΡΠ΅ΡΡΡΡΠΌΡ ΠΎΡΠΎΠ±ΡΠΌΠΈ ΡΠΎΡΠΊΠ°ΠΌΠΈ, ΠΌΠ°ΡΡΠΈΡΡ-Π²ΡΡΠ΅ΡΡ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ Π½Π°ΠΉΠ΄Π΅Π½Ρ Β«ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ Π»ΠΎΠ³Π°ΡΠΈΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΡΒ» ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ ΠΌΠ°ΡΡΠΈΡ. ΠΠ΄ΠΈΠ½ΡΡΠ²Π΅Π½Π½ΠΎΠ΅ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ Π·Π°Π΄Π°ΡΠΈ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΎ ΡΠ΅ΡΠ΅Π· ΠΈΠ½ΡΠ΅Π³ΡΠ°Π»Ρ ΡΠΈΠΏΠ° ΠΠΎΡΠΈ ΠΏΡΠΈ Π²ΡΠΏΠΎΠ»Π½Π΅Π½ΠΈΠΈ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΡΡΠ»ΠΎΠ²ΠΈΡ ΡΠ°Π·ΡΠ΅ΡΠΈΠΌΠΎΡΡΠΈ