27 research outputs found

    Generated heat by different targets irradiated by 660 MeV protons

    Get PDF
    246-254Calorimetric experiments have been performed to analyze different thick targets of natU, C, Pb material, irradiated by 660 MeV protons at the Phasotron accelerator facility, Joint Institute for Nuclear Research (JINR) in Dubna, Russia. The method of online temperature measurement has been compared with MCNPX 2.7.0 simulation and selected with Ansys Transient Thermal Simulation to compare measured temperature with the simulated one. Thermocouples type T and E have been used as a temperature probe. Many different positions have been measured for each target. Temperature results are following very well the processes inside of the cylinders. Changes of heat deposition caused by drops of the proton beam intensity are displayed very well as a jagged line shown in almost every chart. Accurate temperature changing measurement is a very modest variation of how to observe inner macroscopic behavior online

    Monitoring mixed neutron-proton field near the primary proton and deuteron beams in spallation targets

    Get PDF
    282-293At the Joint Institute for Nuclear Research (JINR) we are involved in the Accelerator-Driven-System (ADS) research. We perform experiments with assemblies composed of a spallation target and a subcritical blanket irradiated with high-energy proton or deuteron beams that generate high-energy neutron fields by spallation and fission reactions. In this paper, three uranium assemblies are presented: Energy plus Transmutation (E+T), QUINTA and BURAN. We discuss the results of the E+T and QUINTA irradiations by 1.6 GeV deuterons and 660 MeV protons, respectively. We have focused on the regions close to the primary beam passage through the targets. The field has been measured using activation detectors of 209Bi, 59Co, and natPb. Monte Carlo simulations using MCNPX 2.7.0 have been performed and compared to the experimental results. We discovered that the field intensity near the primary beam is very dependent on the precision of the accelerator beam settings. Therefore, a Monte Carlo-based study of the influence of the uncertainty of primary proton beam parameters on experimental result accuracy of the QUINTA assembly has been carried out. The usage of MCNPX 2.7.0 in the future BURAN irradiations has been assessed.</span

    Generated heat by different targets irradiated by 660 MeV protons

    Get PDF
    Calorimetric experiments have been performed to analyze different thick targets of natU, C, Pb material, irradiated by 660 MeV protons at the Phasotron accelerator facility, Joint Institute for Nuclear Research (JINR) in Dubna, Russia. The method of online temperature measurement has been compared with MCNPX 2.7.0 simulation and selected with Ansys Transient Thermal Simulation to compare measured temperature with the simulated one. Thermocouples type T and E have been used as a temperature probe. Many different positions have been measured for each target. Temperature results are following very well the processes inside of the cylinders. Changes of heat deposition caused by drops of the proton beam intensity are displayed very well as a jagged line shown in almost every chart. Accurate temperature changing measurement is a very modest variation of how to observe inner macroscopic behavior online

    Monitoring mixed neutron-proton field near the primary proton and deuteron beams in spallation targets

    Get PDF
    At the Joint Institute for Nuclear Research (JINR) we are involved in the Accelerator-Driven-System (ADS) research. We perform experiments with assemblies composed of a spallation target and a subcritical blanket irradiated with high-energy proton or deuteron beams that generate high-energy neutron fields by spallation and fission reactions. In this paper, three uranium assemblies are presented: Energy plus Transmutation (E+T), QUINTA and BURAN. We discuss the results of the E+T and QUINTA irradiations by 1.6 GeV deuterons and 660 MeV protons, respectively. We have focused on the regions close to the primary beam passage through the targets. The field has been measured using activation detectors of 209Bi, 59Co, and natPb. Monte Carlo simulations using MCNPX 2.7.0 have been performed and compared to the experimental results. We discovered that the field intensity near the primary beam is very dependent on the precision of the accelerator beam settings. Therefore, a Monte Carlo-based study of the influence of the uncertainty of primary proton beam parameters on experimental result accuracy of the QUINTA assembly has been carried out. The usage of MCNPX 2.7.0 in the future BURAN irradiations has been assessed
    corecore