7 research outputs found

    ヌクレオリンはテロメラーゼと相互作用する

    Get PDF
    取得学位 : 博士(医学), 学位授与番号 : 医博甲第1660号, 学位授与年月日 : 平成16年12月31日, 学位授与大学 : 金沢大

    Human telomerase exists in two distinct active complexes in vivo

    Get PDF
    金沢大学がん研究所Telomerase, a stable complex of telomerase reverse transcriptase (TERT) and template RNA (TERC), is responsible for telomere maintenance. During purification trials of recombinant human telomerase of the two components reconstituted in insect cells, we identified two complexes of human telomerase of molecular masses 680 and 380 kDa, both of which retain telomerase activity in vitro. We show here that the former complex does not include Hsp90 (heat shock protein 90) and its telomerase activity is resistant to Hsp90 inhibitors, whereas the latter contains Hsp90 and its telomerase activity is sensitive to Hsp90 inhibitors. N-terminal of FLAG-hTERT in the former is exposed, as this complex was efficiently purified with anti-FLAG M2 affinity resin. We also identified two different telomerase complexes in HeLa cells, in addition to ectopically expressed hTERT. Most of endogenous hTERT and FLAG-hTERT was detected around 680 kDa. These two complexes in HeLa cells have the same properties as their respective reconstituted telomerases. The unstable property of the telomerase complex with Hsp90, especially in the presence of Hsp90 inhibitors, was due to proteasome-mediated degradation of hTERT, since proteasome inhibitors prevented hTERT degradation in vivo. To our knowledge, this is the first demonstration of two distinct active complexes of human telomerase ectopically expressed in insect and mammalian cells. © 2007 The Japanese Biochemical Society

    Hepatitis B virus X protein overcomes oncogenic RAS-induced senescence in human immortalized cells

    Get PDF
    医薬保健研究域医学系Chronic infection with hepatitis B virus (HBV) is a major risk factor for hepatocellular carcinoma. The HBV X protein (HBx) is thought to have oncogenic potential, although the molecular mechanism remains obscure. Pathological roles of HBx in the carcinogenic process have been examined using rodent systems and no report is available on the oncogenic roles of HBx in human cells in vitro. We therefore examined the effect of HBx on immortalization and transformation in human primary cells. We found that HBx could overcome active RAS-induced senescence in human immortalized cells and that these cells could form colonies in soft agar and tumors in nude mice. HBx alone, however, could contribute to neither immortalization nor transformation of these cells. In a population doubling analysis, an N-terminal truncated mutant of HBx, HBx-D1 (amino acids 51-154), which harbors the coactivation domain, could overcome active RAS-induced cellular senescence, but these cells failed to exhibit colonigenic and tumorigenic abilities, probably due to the low expression level of the protein. By scanning a HBx expression library of the clustered-alanine substitution mutants, the N-terminal domain was found to be critical for overcoming active RAS-induced senescence by stabilizing full-length HBx. These results strongly suggest that HBx can contribute to carcinogenesis by overcoming active oncogene-induced senescence. © 2007 Japanese Cancer Association

    Nucleolin interacts with telomerase

    No full text

    A Critical Function for the Actin Cytoskeleton in Targeted Exocytosis of Prefusion Vesicles during Myoblast Fusion

    Get PDF
    SummaryMyoblast fusion is an essential step during muscle differentiation. Previous studies in Drosophila have revealed a signaling pathway that relays the fusion signal from the plasma membrane to the actin cytoskeleton. However, the function for the actin cytoskeleton in myoblast fusion remains unclear. Here we describe the characterization of solitary (sltr), a component of the myoblast fusion signaling cascade. sltr encodes the Drosophila ortholog of the mammalian WASP-interacting protein. Sltr is recruited to sites of fusion by the fusion-competent cell-specific receptor Sns and acts as a positive regulator for actin polymerization at these sites. Electron microscopy analysis suggests that formation of F-actin-enriched foci at sites of fusion is involved in the proper targeting and coating of prefusion vesicles. These studies reveal a surprising cell-type specificity of Sltr-mediated actin polymerization in myoblast fusion, and demonstrate that targeted exocytosis of prefusion vesicles is a critical step prior to plasma membrane fusion
    corecore