8,440 research outputs found

    Safety and effi cacy of insertion of supraglottic device in anaesthetised patients by fi rst-time users

    Get PDF
    Background: Over the years, several supraglottic devices have been developed, but the most recent one is the i-gel®. It is a new device with some distinctive features that set it apart from many of its competitors. This study was designed to determine the safety and efficacy of placing different airway devices by first-time users. Methods: Fifty volunteer doctors who are regularly involved in cardiopulmonary resuscitation and emergency medicine were divided into two groups on the basis of their experience and were timed to insert the two supraglottic devices, i-gel® and laryngeal mask airway (LMA), in ASA grade I, II and III anaesthetised patients under expert guidance. The haemodynamic parameters were recorded and the volunteers were asked to complete a questionnaire.Results: In both the groups, i-gel® was inserted in less time than LMA. The time taken for insertion of i-gel® by both the groups was not significant. The success rate of inserting i-gel® by both groups was not significant (p > 0.05). Ninety-six percent of participants in both the groups found that i-gel® was easier to insert and required minimal adjustment.Conclusion: Our results suggest that i-gel® is rapidly inserted by novices, and produces haemodynamic changes compared to those resulting from insertion of classic LMA. We suggest that the device is safe and can be used by first-time users and experts in cardiopulmonary resuscitation and in emergencies.Keywords: first-time users; laryngeal mask airway; i-ge

    SMITIN: Self-Monitored Inference-Time INtervention for Generative Music Transformers

    Full text link
    We introduce Self-Monitored Inference-Time INtervention (SMITIN), an approach for controlling an autoregressive generative music transformer using classifier probes. These simple logistic regression probes are trained on the output of each attention head in the transformer using a small dataset of audio examples both exhibiting and missing a specific musical trait (e.g., the presence/absence of drums, or real/synthetic music). We then steer the attention heads in the probe direction, ensuring the generative model output captures the desired musical trait. Additionally, we monitor the probe output to avoid adding an excessive amount of intervention into the autoregressive generation, which could lead to temporally incoherent music. We validate our results objectively and subjectively for both audio continuation and text-to-music applications, demonstrating the ability to add controls to large generative models for which retraining or even fine-tuning is impractical for most musicians. Audio samples of the proposed intervention approach are available on our demo page http://tinyurl.com/smitin

    Analyzing a higher order q(t)q(t) model and its implications in the late evolution of the Universe using recent observational datasets

    Full text link
    In this research paper, we explore a well-motivated parametrization of the time-dependent deceleration parameter, characterized by a cubic form, within the context of late time cosmic acceleration. The current analysis is based on the f(Q,T)f(Q,T) gravity theory, by considering the background metric as the homogeneous and isotropic Friedmann Lema\^itre Robertson Walker (FLRW) metric. Investigating the model reveals intriguing features of the late universe. To constrain the model, we use the recent observational datasets, including cosmic chronometer (CC), Supernovae (SNIa), Baryon Acoustic Oscillation (BAO), Cosmic Microwave Background Radiation (CMB), Gamma Ray Burst (GRB), and Quasar (Q) datasets. The joint analysis of these datasets results in tighter constraints for the model parameters, enabling us to discuss both the physical and geometrical aspects of the model. Moreover, we determine the present values of the deceleration parameter (q0q_0), the Hubble parameter (H0H_0), and the transition redshift (ztz_t) from deceleration to acceleration ensuring consistency with some recent results of Planck 2018. Our statistical analysis yields highly improved results, surpassing those obtained in previous investigations. Overall, this study presents valuable insights into the higher order q(t)q(t) model and its implications for late-time cosmic acceleration, shedding light on the nature of the late universe

    NeuroHeed+: Improving Neuro-steered Speaker Extraction with Joint Auditory Attention Detection

    Full text link
    Neuro-steered speaker extraction aims to extract the listener's brain-attended speech signal from a multi-talker speech signal, in which the attention is derived from the cortical activity. This activity is usually recorded using electroencephalography (EEG) devices. Though promising, current methods often have a high speaker confusion error, where the interfering speaker is extracted instead of the attended speaker, degrading the listening experience. In this work, we aim to reduce the speaker confusion error in the neuro-steered speaker extraction model through a jointly fine-tuned auxiliary auditory attention detection model. The latter reinforces the consistency between the extracted target speech signal and the EEG representation, and also improves the EEG representation. Experimental results show that the proposed network significantly outperforms the baseline in terms of speaker confusion and overall signal quality in two-talker scenarios

    Behaviour of three charged particles on a plane under perpendicular magnetic field

    Full text link
    We consider the problem of three identical charged particles on a plane under a perpendicular magnetic field and interacting through Coulomb repulsion. This problem is treated within Taut's framework, in the limit of vanishing center of mass vector R0\vec{R} \to \vec{0}, which corresponds to the strong magnetic field limit, occuring for example in the Fractional Quantum Hall Effect. Using the solutions of the biconfluent Heun equation, we compute the eigenstates and show that there is two sets of solutions. The first one corresponds to a system of three independent anyons which have their angular momenta fixed by the value of the magnetic field and specified by a dimensionless parameter ClBl0C \simeq \frac{l_B}{l_0}, the ratio of lBl_B, the magnetic length, over l0l_0, the Bohr radius. This anyonic character, consistent with quantum mechanics of identical particles in two dimensions, is induced by competing physical forces. The second one corresponds to the case of the Landau problem when C0C \to 0. Finally we compare these states with the quantum Hall states and find that the Laughlin wave functions are special cases of our solutions under certains conditions.Comment: 15 pages, 3 figures, Accepeted in JP

    Spinning, breathing, and flapping: Periodicities in Saturn’s middle magnetosphere

    Full text link
    In Saturn’s magnetosphere, ubiquitous fluctuations with a period of ~10.7 h have been observed in Saturn kilometric radiation (SKR), auroral emissions, the magnetic field, the electron density, and energetic particle fluxes. Here we characterize previously unstudied periodicities in plasma properties inside of 15 RS near the equatorial plane. Although periodically varying magnetic perturbations rotate relatively smoothly (spinning), plasma properties do not. The phase of the peak value of plasma density or pressure perturbations can change substantially across a few hours of local time or RS. As a means of interpreting observations, we use a magnetohydrodynamic simulation that generates field‐aligned currents centered at 70° invariant latitude in Saturn’s southern ionosphere and rotating at the SKR period. The simulation reproduces many periodic features of the data including not only spinning perturbations but also global‐scale compression and expansion (breathing). Simulated plasma properties are also modulated by periodic large‐scale north‐south motion (flapping) in regions beyond ~15 Saturn radii (RS), which we do not analyze here. Inside of 15 RS, plasma responds to a superposition of spinning and breathing at the spin period, developing perturbations that peak at different phases depending on what is measured and where. Strong compressional effects act impulsively over a limited range of rotation phase. Superposition of local and global‐scale variations produces phase jumps across short distances and can introduce multiple peaks in the variation of plasma properties within one rotation period, accounting for anomalies in the phase dependence of periodic fluctuations identified in the sparse data available.Key PointsEquatorial plasma and field moments in the core region are modulated at the SKR periodThe peak phase of observed plasma properties depends on the location of measurementPeriodic changes in the magnetosphere can be described as spinning, breathing, and flappingPeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/136320/1/jgra53132-sup-0001-Text_SI-S01.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/136320/2/jgra53132_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/136320/3/jgra53132-sup-0003-Figure_SI-S01.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/136320/4/jgra53132.pd

    Conductivity in a symmetry broken phase: Spinless fermions with 1/d1/d corrections

    Full text link
    The dynamic conductivity σ(ω)\sigma(\omega) of strongly correlated electrons in a symmetry broken phase is investigated in the present work. The model considered consists of spinless fermions with repulsive interaction on a simple cubic lattice. The investigated symmetry broken phase is the charge density wave (CDW) with wave vector Q=(π,π,π)Q=(\pi,\pi,\pi)^\dagger which occurs at half-filling. The calculations are based on the high dimensional approach, i.e. an expansion in the inverse dimension 1/d1/d is used. The finite dimensionality is accounted for by the inclusion of linear terms in 1/d1/d and the true finite dimensional DOS. Special care is paid to the setup of a conserving approximation in the sense of Baym/Kadanoff without inconsistencies. The resulting Bethe-Salpeter equation is solved for the dynamic conductivity in the non symmetry broken and in the symmetry broken phase (AB-CDW). The dc-conductivity is reduced drastically in the CDW. Yet it does not vanish in the limit T0T \to 0 due to a subtle cancellation of diverging mobility and vanishing DOS. In the dynamic conductivity σ(ω)\sigma(\omega) the energy gap induced by the symmetry breaking is clearly discernible. In addition, the vertex corrections of order 1/d1/d lead to an excitonic resonance lying within the gap.Comment: 23 pages, 19 figures included with psfig, Revtex; Physical Review B15, in press (October/November 1996) depending on the printer/screen driver, it might be necessary to comment out figures 3,4,5,10,11,12,19 and have them printed separatel

    Ionospheric flow shear associated with the preexisting auroral arc: A statistical study from the FAST spacecraft data

    Full text link
    An auroral substorm is a disturbance in the magnetosphere that releases energy stored in the magnetotail into the high‐latitude ionosphere. By definition, an auroral substorm commences when a discrete auroral arc brightens and subsequently expands poleward and azimuthally. The arc that brightens is usually the most equatorward of several auroral arcs that remain quiescent for ~5 to ~60 min before the breakup commences. This arc is often referred to as the “preexisting auroral arc (PAA)” or the “growth‐phase arc.” In this study, we use FAST measurements to establish the statistics of flow patterns near PAAs in the ionosphere. We find that flow shear is present in the vicinity of a preexisting arc. When a PAA appears in the evening sector, enhanced westward flow develops equatorward of the arc, whereas when a PAA appears in the morning sector, enhanced eastward flow develops poleward of the arc. We benchmark locations of the PAAs relative to large‐scale field‐aligned currents (FACs) and convective flows in the ionosphere, finding that the arc forms in the upward current region within ~1° of the Region 1/Region 2 boundary in all local time sectors from 20 MLT to 03 MLT. We also find that near midnight in the Harang region, most of the PAAs lie within 0.5° poleward of the low‐latitude Region 1/Region 2 currents boundary and sit between the westward and eastward flow peak but equatorward of the flow reversal point. Finally, we examine arc‐associated electrodynamics and find that the FAC of the PAA is mainly closed by the north‐south Pedersen current in the ionosphere.Key PointsAn ionospheric flow shear is associated with the preexisting auroral arcThe FAC of the PAA is primarily closed by N‐S Pedersen current in the ionosphereThe PAA is located very close to the R1/R2 boundaryPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/112278/1/jgra51768.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/112278/2/jgra51768-sup-0001-supinfo.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/112278/3/jgra51768-sup-0002-supinfo.pd

    Scenario-Aware Audio-Visual TF-GridNet for Target Speech Extraction

    Full text link
    Target speech extraction aims to extract, based on a given conditioning cue, a target speech signal that is corrupted by interfering sources, such as noise or competing speakers. Building upon the achievements of the state-of-the-art (SOTA) time-frequency speaker separation model TF-GridNet, we propose AV-GridNet, a visual-grounded variant that incorporates the face recording of a target speaker as a conditioning factor during the extraction process. Recognizing the inherent dissimilarities between speech and noise signals as interfering sources, we also propose SAV-GridNet, a scenario-aware model that identifies the type of interfering scenario first and then applies a dedicated expert model trained specifically for that scenario. Our proposed model achieves SOTA results on the second COG-MHEAR Audio-Visual Speech Enhancement Challenge, outperforming other models by a significant margin, objectively and in a listening test. We also perform an extensive analysis of the results under the two scenarios.Comment: Accepted by ASRU 202

    NIIRF: Neural IIR Filter Field for HRTF Upsampling and Personalization

    Full text link
    Head-related transfer functions (HRTFs) are important for immersive audio, and their spatial interpolation has been studied to upsample finite measurements. Recently, neural fields (NFs) which map from sound source direction to HRTF have gained attention. Existing NF-based methods focused on estimating the magnitude of the HRTF from a given sound source direction, and the magnitude is converted to a finite impulse response (FIR) filter. We propose the neural infinite impulse response filter field (NIIRF) method that instead estimates the coefficients of cascaded IIR filters. IIR filters mimic the modal nature of HRTFs, thus needing fewer coefficients to approximate them well compared to FIR filters. We find that our method can match the performance of existing NF-based methods on multiple datasets, even outperforming them when measurements are sparse. We also explore approaches to personalize the NF to a subject and experimentally find low-rank adaptation to be effective.Comment: Accepted to ICASSP 202
    corecore