4 research outputs found

    HLA-A AND HLA-B ALLELES ASSOCIATED IN PSORIASIS PATIENTS FROM MUMBAI, WESTERN INDIA

    No full text
    Background: Psoriasis, a common autoimmune disorder characterized by T cell-mediated keratinocyte hyperproliferation, is known to be associated with the presence of certain specific Human Leukocyte Antigen (HLA) alleles. Aim: To evaluate distribution of HLA-A and HLA-B alleles and hence identify the susceptible allele of psoriasis from patients in Western India. Materials and Methods: The study design included 84 psoriasis patients and 291 normal individuals as controls from same geographical region. HLA-A and HLA-B typing was done using Serology typing. Standard statistical analysis was followed to identify the odds ratio (OR), allele frequencies, and significant P value using Graphpad software. Results: The study revealed significant increase in frequencies of HLA-A2 (OR-3.976, P<0.0001), B8 (OR-5.647, P<0.0001), B17 (OR-5.452, P<0.0001), and B44 (OR-50.460, P<0.0001), when compared with controls. Furthermore, the frequencies of HLA-A28 (OR-0.074, P=0.0024), B5 (OR-0.059, P<0.0001), B12 (OR-0.051, P=0.0002), and B15 (OR-0.237, P=0.0230) were significantly decreased in psoriasis patients. Conclusion: This study shows the strong association of HLA-A2, B8, and B17 antigens with psoriasis conferring susceptibility to psoriasis patients from Western India, while the antigens HLA-A28, B5, and B12 show strong negative association with the disease

    Multi-Color Single-Molecule Imaging Uncovers Extensive Heterogeneity in mRNA Decoding

    No full text
    mRNA translation is a key step in decoding genetic information. Genetic decoding is surprisingly heterogeneous because multiple distinct polypeptides can be synthesized from a single mRNA sequence. To study translational heterogeneity, we developed the MoonTag, a fluorescence labeling system to visualize translation of single mRNAs. When combined with the orthogonal SunTag system, the MoonTag enables dual readouts of translation, greatly expanding the possibilities to interrogate complex translational heterogeneity. By placing MoonTag and SunTag sequences in different translation reading frames, each driven by distinct translation start sites, start site selection of individual ribosomes can be visualized in real time. We find that start site selection is largely stochastic but that the probability of using a particular start site differs among mRNA molecules and can be dynamically regulated over time. This study provides key insights into translation start site selection heterogeneity and provides a powerful toolbox to visualize complex translation dynamics. The MoonTag system is a fluorescence labeling system for visualizing translation of single mRNA molecules in live cells. Combining the MoonTag system with the orthogonal SunTag system enables simultaneous measurements of translation of two open reading frames in an mRNA and reveals that ribosomes differentially decode individual mRNA molecules
    corecore