53 research outputs found

    The complete genome sequence of a Crimean-Congo Hemorrhagic Fever virus isolated from an endemic region in Kosovo

    Get PDF
    The Balkan region and Kosovo in particular, is a well-known Crimean-Congo hemorrhagic fever (CCHF) endemic region, with frequent epidemic outbreaks and sporadic cases occurring with a hospitalized case fatality of approximately 30%. Recent analysis of complete genome sequences of diverse CCHF virus strains showed that the genome plasticity of the virus is surprisingly high for an arthropod-borne virus. High levels of nucleotide and amino acid differences, frequent RNA segment reassortment and even RNA recombination have been recently described. This diversity illustrates the need to determine the complete genome sequence of CCHF virus representatives of all geographically distinct endemic areas, particularly in light of the high pathogenicity of the virus and its listing as a potential bioterrorism threat. Here we describe the first complete CCHF virus genome sequence of a virus (strain Kosova Hoti) isolated from a hemorrhagic fever case in the Balkans. This virus strain was isolated from a fatal CCHF case, and passaged only twice on Vero E6 cells prior to sequence analysis. The virus total genome was found to be 19.2 kb in length, consisting of a 1672 nucleotide (nt) S segment, a 5364 nt M segment and a 12150 nt L segment. Phylogenetic analysis of CCHF virus complete genomes placed the Kosova Hoti strain in the Europe/Turkey group, with highest similarity seen with Russian isolates. The virus M segments are the most diverse with up to 31 and 27% differences seen at the nt and amino acid levels, and even 1.9% amino acid difference found between the Kosova Hoti and another strain from Kosovo (9553-01). This suggests that distinct virus strains can coexist in highly endemic areas

    Nosocomial Outbreak of Crimean-Congo Hemorrhagic Fever, Sudan

    Get PDF
    To confirm the presence of Crimean-Congo hemorrhagic fever in Sudan, we tested serum of 8 patients with hemorrhagic fever in a rural hospital in 2008. Reverse transcription–PCR identified Crimean-Congo hemorrhagic fever virus. Its identification as group III lineage indicated links to virus strains from South Africa, Mauritania, and Nigeria

    Synthesis, biological evaluation, X-ray molecular structure and molecular docking studies of RGD mimetics containing 6-amino-2,3-dihydroisoindolin-1-one fragment as ligands of integrin αIIbβ3

    Get PDF
    AbstractA series of novel RGD mimetics containing phthalimidine fragment was designed and synthesized. Their antiaggregative activity determined by Born’s method was shown to be due to inhibition of fibrinogen binding to αIIbβ3. Molecular docking of RGD mimetics to αIIbβ3 receptor showed the key interactions in this complex, and also some correlations have been observed between values of biological activity and docking scores. The single crystal X-ray data were obtained for five mimetics

    Chasing Jenner's Vaccine: Revisiting Cowpox Virus Classification

    Get PDF
    Cowpox virus (CPXV) is described as the source of the first vaccine used to prevent the onset and spread of an infectious disease. It is one of the earliest described members of the genus Orthopoxvirus, which includes the viruses that cause smallpox and monkeypox in humans. Both the historic and current literature describe “cowpox” as a disease with a single etiologic agent. Genotypic data presented herein indicate that CPXV is not a single species, but a composite of several (up to 5) species that can infect cows, humans, and other animals. The practice of naming agents after the host in which the resultant disease manifests obfuscates the true taxonomic relationships of “cowpox” isolates. These data support the elevation of as many as four new species within the traditional “cowpox” group and suggest that both wild and modern vaccine strains of Vaccinia virus are most closely related to CPXV of continental Europe rather than the United Kingdom, the homeland of the vaccine

    Newly discovered Ebola virus associated with hemorrhagic fever outbreak in Uganda

    Get PDF
    In this report we describe a newly discovered ebolavirus species which caused a large hemorrhagic fever outbreak in western Uganda. The virus is genetically distinct, differing by more than 30% at the genome level from all other known ebolavirus species. The unique nature of this virus created challenges for traditional filovirus molecular based diagnostic assays and genome sequencing approaches. Instead, we quickly determined over 70% of the virus genome using a recently developed random-primed pyrosequencing approach that allowed the rapid development of a molecular detection assay that was deployed in the disease outbreak response. This draft sequence allowed easy completion of the whole genome sequence using a traditional primer walking approach and prompt confirmation that this virus represented a new ebolavirus species. Current efforts to design effective diagnostics, antivirals and vaccines will need to take into account the distinct nature of this important new member of the filovirus family

    Ancient Ancestry of KFDV and AHFV Revealed by Complete Genome Analyses of Viruses Isolated from Ticks and Mammalian Hosts

    Get PDF
    Alkhurma hemorrhagic fever (AHF) and Kyasanur Forest disease (KFD) viruses both cause serious and sometimes fatal human disease in their respective ranges, Saudi Arabia and India. AHFV was first identified in the mid-1990s and due to its strong genetic similarity to KFDV it has since been considered the result of a recent introduction of KFDV into Saudi Arabia. To gain a better understanding of the evolutionary history of AHFV and KFDV, we sequenced the full-length genomes of 3 KFDV and 16 AHFV. Sequence analyses show a greater genetic diversity within AHFV than previously thought, particularly within the tick population. The phylogeny constructed with these 19 full-length sequences and two AHFV sequences from GenBank indicates AHFV diverged from KFDV almost 700 years ago. Given the presence of competent tick vectors in the regions between and surrounding Saudi Arabia and India and the recent identification of AHFV in Egypt, these results suggest a broader geographic range of AHFV and KFDV, and raise the possibility of other AHFV/KFDV–like viruses circulating in these regions

    Multiple Crimean-Congo Hemorrhagic Fever Virus Strains Are Associated with Disease Outbreaks in Sudan, 2008–2009

    Get PDF
    The tick-borne virus which causes the disease Crimean-Congo hemorrhagic fever (CCHF) is known to be widely distributed throughout much of Africa, Southern Europe, the Middle East, Central Asia, and Southern Russia. Humans contract the virus from contact with infected people, infected animals (which do not show symptoms), and from the bite of infected ticks. CCHF was recently recognized in the Sudan when several hospital staff and patients died from the disease in a rural hospital. The genetic analysis of viruses associated with the 2008 and 2009 outbreaks shows that several CCHF viral strains currently circulate and cause human outbreaks in the Sudan, highlighting CCHF virus as an emerging pathogen. The Sudanese strains are similar to others circulating in Africa, indicating movement of virus over large distances with introduction and disease outbreaks in rural areas possible. Understanding the epidemiology of zoonotic diseases such as CCHF is especially important in the Sudan given the large numbers of livestock in the country, and their importance to the economy and rural communities. It is imperative that hospital staff consider CCHF as a possible disease agent, since they are at a high risk of contracting the disease, especially in hospitals with limited medical supplies

    The Phylogenetics and Ecology of the Orthopoxviruses Endemic to North America

    Get PDF
    The data presented herein support the North American orthopoxviruses (NA OPXV) in a sister relationship to all other currently described Orthopoxvirus (OPXV) species. This phylogenetic analysis reaffirms the identification of the NA OPXV as close relatives of “Old World” (Eurasian and African) OPXV and presents high support for deeper nodes within the Chordopoxvirinae family. The natural reservoir host(s) for many of the described OPXV species remains unknown although a clear virus-host association exists between the genus OPXV and several mammalian taxa. The hypothesized host associations and the deep divergence of the OPXV/NA OPXV clades depicted in this study may reflect the divergence patterns of the mammalian faunas of the Old and New World and reflect a more ancient presence of OPXV on what are now the American continents. Genes from the central region of the poxvirus genome are generally more conserved than genes from either end of the linear genome due to functional constraints imposed on viral replication abilities. The relatively slower evolution of these genes may more accurately reflect the deeper history among the poxvirus group, allowing for robust placement of the NA OPXV within Chordopoxvirinae. Sequence data for nine genes were compiled from three NA OPXV strains plus an additional 50 genomes collected from Genbank. The current, gene sequence based phylogenetic analysis reaffirms the identification of the NA OPXV as the nearest relatives of “Old World” OPXV and presents high support for deeper nodes within the Chordopoxvirinae family. Additionally, the substantial genetic distances that separate the currently described NA OPXV species indicate that it is likely that many more undescribed OPXV/NA OPXV species may be circulating among wild animals in North America

    Genetic Detection and Characterization of Lujo Virus, a New Hemorrhagic Fever–Associated Arenavirus from Southern Africa

    Get PDF
    Lujo virus (LUJV), a new member of the family Arenaviridae and the first hemorrhagic fever–associated arenavirus from the Old World discovered in three decades, was isolated in South Africa during an outbreak of human disease characterized by nosocomial transmission and an unprecedented high case fatality rate of 80% (4/5 cases). Unbiased pyrosequencing of RNA extracts from serum and tissues of outbreak victims enabled identification and detailed phylogenetic characterization within 72 hours of sample receipt. Full genome analyses of LUJV showed it to be unique and branching off the ancestral node of the Old World arenaviruses. The virus G1 glycoprotein sequence was highly diverse and almost equidistant from that of other Old World and New World arenaviruses, consistent with a potential distinctive receptor tropism. LUJV is a novel, genetically distinct, highly pathogenic arenavirus

    Seasonal pulses of Marburg virus circulation in juvenile Rousettus aegyptiacus bats coincide with periods of increased risk of human infection

    Get PDF
    Marburg virus (family Filoviridae) causes sporadic outbreaks of severe hemorrhagic disease in sub-Saharan Africa. Bats have been implicated as likely natural reservoir hosts based most recently on an investigation of cases among miners infected in 2007 at the Kitaka mine, Uganda, which contained a large population of Marburg virus-infected Rousettus aegyptiacus fruit bats. Described here is an ecologic investigation of Python Cave, Uganda, where an American and a Dutch tourist acquired Marburg virus infection in December 2007 and July 2008. More than 40,000 R. aegyptiacus were found in the cave and were the sole bat species present. Between August 2008 and November 2009, 1,622 bats were captured and tested for Marburg virus. Q-RT-PCR analysis of bat liver/spleen tissues indicated ,2.5% of the bats were actively infected, seven of which yielded Marburg virus isolates. Moreover, Q-RT-PCR-positive lung, kidney, colon and reproductive tissues were found, consistent with potential for oral, urine, fecal or sexual transmission. The combined data for R. aegyptiacus tested from Python Cave and Kitaka mine indicate low level horizontal transmission throughout the year. However, Q-RT-PCR data show distinct pulses of virus infection in older juvenile bats (,six months of age) that temporarily coincide with the peak twiceyearly birthing seasons. Retrospective analysis of historical human infections suspected to have been the result of discrete spillover events directly from nature found 83% (54/65) events occurred during these seasonal pulses in virus circulation, perhaps demonstrating periods of increased risk of human infection. The discovery of two tags at Python Cave from bats marked at Kitaka mine, together with the close genetic linkages evident between viruses detected in geographically distant locations, are consistent with R. aegyptiacus bats existing as a large meta-population with associated virus circulation over broad geographic ranges. These findings provide a basis for developing Marburg hemorrhagic fever risk reduction strategies.The Department of Health and Human Serviceshttp://www.plospathogens.or
    corecore