5,731 research outputs found

    Non Abelian structures and the geometric phase of entangled qudits

    Full text link
    In this work, we address some important topological and algebraic aspects of two-qudit states evolving under local unitary operations. The projective invariant subspaces and evolutions are connected with the common elements characterizing the su(d) Lie algebra and their representations. In particular, the roots and weights turn out to be natural quantities to parametrize cyclic evolutions and fractional phases. This framework is then used to recast the coset contribution to the geometric phase in a form that generalizes the usual monopole-like formula for a single qubit.Comment: 22 pages, LaTe

    Fractional topological phase for entangled qudits

    Full text link
    We investigate the topological structure of entangled qudits under unitary local operations. Different sectors are identified in the evolution, and their geometrical and topological aspects are analyzed. The geometric phase is explicitly calculated in terms of the concurrence. As a main result, we predict a fractional topological phase for cyclic evolutions in the multiply connected space of maximally entangled states.Comment: REVTex, 4 page

    Spin-orbit mode transfer via a classical analog of quantum teleportation

    Full text link
    We translate the quantum teleportation protocol into a sequence of coherent operations involving three degrees of freedom of a classical laser beam. The protocol, which we demonstrate experimentally, transfers the polarisation state of the input beam to the transverse mode of the output beam. The role of quantum entanglement is played by a non-separable mode describing the path and transverse degrees of freedom. Our protocol illustrates the possibility of new optical applications based on this intriguing classical analogue of quantum entanglement.Comment: 5 pages, 7 figure
    • …
    corecore