5,633 research outputs found

    Multiphoton path entanglement by non-local bunching

    Full text link
    Multiphoton path entanglement is created without applying post-selection, by manipulating the state of stimulated parametric down-conversion. A specific measurement on one of the two output spatial modes leads to the non-local bunching of the photons of the other mode, forming the desired multiphoton path entangled state. We present experimental results for the case of a heralded two-photon path entangled state and show how to extend this scheme to higher photon numbers.Comment: 4 pages, 5 figures, published versio

    The cosmic gravitational wave background in a cyclic universe

    Full text link
    Inflation predicts a primordial gravitational wave spectrum that is slightly ``red,'' i.e., nearly scale-invariant with slowly increasing power at longer wavelengths. In this paper, we compute both the amplitude and spectral form of the primordial tensor spectrum predicted by cyclic/ekpyrotic models. The spectrum is blue and exponentially suppressed compared to inflation on long wavelengths. The strongest observational constraint emerges from the requirement that the energy density in gravitational waves should not exceed around 10 per cent of the energy density at the time of nucleosynthesis.Comment: 4 pages, 3 figuer

    Theoretical investigation of moir\'e patterns in quantum images

    Full text link
    Moir\'e patterns are produced when two periodic structures with different spatial frequencies are superposed. The transmission of the resulting structure gives rise to spatial beatings which are called moir\'e fringes. In classical optics, the interest in moir\'e fringes comes from the fact that the spatial beating given by the frequency difference gives information about details(high spatial frequency) of a given spatial structure. We show that moir\'e fringes can also arise in the spatial distribution of the coincidence count rate of twin photons from the parametric down-conversion, when spatial structures with different frequencies are placed in the path of each one of the twin beams. In other words,we demonstrate how moir\'e fringes can arise from quantum images

    Warped product approach to universe with non-smooth scale factor

    Full text link
    In the framework of Lorentzian warped products, we study the Friedmann-Robertson-Walker cosmological model to investigate non-smooth curvatures associated with multiple discontinuities involved in the evolution of the universe. In particular we analyze non-smooth features of the spatially flat Friedmann-Robertson-Walker universe by introducing double discontinuities occurred at the radiation-matter and matter-lambda phase transitions in astrophysical phenomenology.Comment: 10 page

    Designing Cyclic Universe Models

    Full text link
    Recent advances in understanding the propagation of perturbations through the transition from big crunch to big bang (esp. Tolley et al. hep-th/0306109) make it possible for the first time to consider the full set of phenomenological constraints on the scalar field potential in cyclic models of the universe. We show that cyclic models require a comparable degree of tuning to that needed for inflationary models. The constraints are reduced to a set of simple design rules including "fast-roll" parameters analogous to the "slow-roll" parameters in inflation.Comment: 4 pages, 2 figures. Minor typos and figure correcte

    String production at the level of effective field theory

    Full text link
    Pair creation of strings in time-dependent backgrounds is studied from an effective field theory viewpoint, and some possible cosmological applications are discussed. Simple estimates suggest that excited strings may have played a significant role in preheating, if the string tension as measured in four-dimensional Einstein frame falls a couple of orders of magnitude below the four-dimensional Planck scale.Comment: 20 pages, latex2e. v2: a reference adde
    • …
    corecore