24 research outputs found

    Effects of Presence of Waves on Shallow Estuaries Hydrodynamics

    Get PDF
    Source: ICHE Conference Archive - https://mdi-de.baw.de/icheArchiv

    On the morphodynamics of a wide class of large-scale meandering rivers: Insights gained by coupling LES with sediment-dynamics

    Full text link
    In meandering rivers, interactions between flow, sediment transport, and bed topography affect diverse processes, including bedform development and channel migration. Predicting how these interactions affect the spatial patterns and magnitudes of bed deformation in meandering rivers is essential for various river engineering and geoscience problems. Computational fluid dynamics simulations can predict river morphodynamics at fine temporal and spatial scales but have traditionally been challenged by the large scale of natural rivers. We conducted coupled large-eddy simulation (LES) and bed morphodynamics simulations to create a unique database of hydro-morphodynamic datasets for 42 meandering rivers with a variety of planform shapes and large-scale geometrical features that mimic natural meanders. For each simulated river, the database includes (i) bed morphology, (ii) three-dimensional mean velocity field, and (iii) bed shear stress distribution under bankfull flow conditions. The calculated morphodynamics results at dynamic equilibrium revealed the formation of scour and deposition patterns near the outer and inner banks, respectively, while the location of point bars and scour regions around the apexes of the meander bends is found to vary as a function of the radius of curvature of the bends to the width ratio. A new mechanism is proposed that explains this seemingly paradoxical finding. The high-fidelity simulation results generated in this work provide researchers and scientists with a rich numerical database for morphodynamics and bed shear stress distributions in large-scale meandering rivers to enable systematic investigation of the underlying phenomena and support a range of river engineering applications

    Turbulent flow characteristics around a non-submerged rectangular obstacle on the side of an open channel

    No full text
    The three-dimensional flow structure and turbulence characteristics around a non-submerged rectangular obstacle in an open channel are explored using numerical simulation. In particular, a low length-to-depth ratio condition, shown to be associated with three-dimensional flow features in our previous study, is considered. To sufficiently resolve all the important details of the three-dimensional turbulent flow around and in the entire wake of an obstacle, high-resolution large-eddy simulation (LES) employing is carried out on a parallel supercomputer. The LES results were compared with the measurements and analyzed to examine the horseshoe vortex structure, free-surface vortex structure, recirculation zones, vortex shedding process, turbulence characteristics, and wall shear stress distribution around an obstacle. The results provide important insights into the complete three-dimensional flow structure and wall shear stress patterns around the obstacle

    Turbulent flow characteristics around a non-submerged rectangular obstacle on the side of an open channel

    No full text
    The three-dimensional flow structure and turbulence characteristics around a non-submerged rectangular obstacle in an open channel are explored using numerical simulation. In particular, a low length-to-depth ratio condition, shown to be associated with three-dimensional flow features in our previous study, is considered. To sufficiently resolve all the important details of the three-dimensional turbulent flow around and in the entire wake of an obstacle, high-resolution large-eddy simulation (LES) employing is carried out on a parallel supercomputer. The LES results were compared with the measurements and analyzed to examine the horseshoe vortex structure, free-surface vortex structure, recirculation zones, vortex shedding process, turbulence characteristics, and wall shear stress distribution around an obstacle. The results provide important insights into the complete three-dimensional flow structure and wall shear stress patterns around the obstacle

    Toward control co-design of utility-scale wind turbines: Collective vs. individual blade pitch control

    No full text
    A large-eddy simulation framework has been coupled with controller modules to systematically investigate the impacts of collective (CPC) and individual (IPC) pitch control strategies on utility-scale wind turbine energy production and fatigue loads. Wind turbine components were parameterized using an actuator surface model to simulate the rotor blades and the turbine nacelle. The baseline CPC and IPC algorithms, consisting of single-input single-output proportional–integral controllers and two integral controllers, respectively, were incorporated into the numerical framework. A series of simulations were carried out to investigate the relative performance of the two controllers under various turbulent inflow conditions, spanning hub-height velocities of 7 to 14 m/s. The numerical simulation results of this study showed that, in comparison to the CPC, the IPC controller could successfully reduce the damage equivalent loads of utility-scale turbines at regions 2 and 3 of turbine operation by about 3% and 40%, respectively, without any penalty on the power production of the turbine. It was also shown that, despite its minor impact on the turbulence kinetic energy of the wake, the IPC controller did not influence the recovery of the turbine wake

    A data-driven machine learning approach for yaw control applications of wind farms

    No full text
    This study proposes a cost-effective machine-learning based model for predicting velocity and turbulence kinetic energy fields in the wake of wind turbines for yaw control applications. The model consists of an auto-encoder convolutional neural network (ACNN) trained to extract the features of turbine wakes using instantaneous data from large-eddy simulation (LES). The proposed framework is demonstrated by applying it to the Sandia National Laboratory Scaled Wind Farm Technology facility consisting of three 225 kW turbines. LES of this site is performed for different wind speeds and yaw angles to generate datasets for training and validating the proposed ACNN. It is shown that the ACNN accurately predicts turbine wake characteristics for cases with turbine yaw angle and wind speed that were not part of the training process. Specifically, the ACNN is shown to reproduce the wake redirection of the upstream turbine and the secondary wake steering of the downstream turbine accurately. Compared to the brute-force LES, the ACNN developed herein is shown to reduce the overall computational cost required to obtain the steady state first and second-order statistics of the wind farm by about 85%

    Experimental and computational study of a high-Reynolds jet flow

    No full text
    Three-dimensional jet flows at high Reynolds (Re) numbers, namely over a million, have a significant importance in hydraulic engineering. Despite their importance, most of previous investigations have been mainly focused only on jet flows with orders of magnitude lower Re numbers. We present the results of an experimental campaign and a high fidelity large-eddy simulation (LES) to study a jet with Re~1.7,000,000 in a large-scale flume. Flow measurements are carried out using a pitot tube apparatus and the Virtual Flow Simulator (VFS) model is employed to simulate the flow field. The measured velocity field of the jet is used to evaluate the LES results. The presented experimental data for the cross-sectional velocity distributions at various distances from the jet source provide an unprecedented data-set for model validation at high Re numbers.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author
    corecore