21 research outputs found

    Mechanisms of ionic current changes underlying rhythmic activity recovery after decentralization

    Get PDF
    Neuronal networks capableof generating rhythmic output in the absence of patterned sensory or central inputs are widely represented in the nervous system where they support a variety of functions, from learning and memory to rhythmic motor activity such as breathing. To perfectly function in a living organism, rhythm-generating networks have to combine the capability of producing a stable output with the plasticity needed to adapt to the changing demands of the organism and environment. This dissertation used the pyloric network of the crab Cancer borealis to identify potential mechanisms that ensure stability and adaptation of rhythm generation by neuronal networks under changing environmental conditions, in particular after the removal of neuromodulatory input to this network (decentralization). For this purpose, changes in ionic currents during the process of network activity recovery after decentralization were studied. The previously unreported phenomenon of coordinated expression of ionic currents within and between network neurons under normal physiological conditions was described. Detailed time course of alterations in current levels and in the coordination of ionic currents during the process of activity recovery after decentralization was determined for pacemaker and follower neurons. During the investigation of the molecular mechanisms underlying the post-decentralization changes, a novel role of central neuromodulators and of the cell-to-cell communication within the network in maintaining ionic current levels and their coordinations was demonstrated. Finally, the involvement of the two mechanisms of network plasticity, namely extrinsic (activity-dependent) and intrinsic (neuromodulator-dependent) regulation, in the recovery process after decentralization was shown. A thorough understanding of the mechanisms that are responsible for the stability and plasticity of neuronal circuits is an important step in learning how to manipulate such networks to cure diseases, enhance performance, build advanced robotic systems, create a functioning computer model of a living organism, etc. The discovery of a novel mechanism of ionic current regulation, i.e. the inter-dependent coordination of different ionic currents, will potentially contribute to this process

    Nucleic acid-based therapeutics for the treatment of central nervous system disorders

    Get PDF
    Nucleic acid-based therapeutics (NBTs) are an emerging class of drugs with potential for the treatment of a wide range of central nervous system conditions. To date, pertaining to CNS indications, there are two commercially available NBTs and a large number of ongoing clinical trials. However, these NBTs are applied directly to the brain due to very low blood brain barrier permeability. In this review, we outline recent advances in chemical modifications of NBTs and NBT delivery techniques intended to promote brain exposure, efficacy, and possible future systemic application

    Activity and Neuromodulatory Input Contribute to the Recovery of Rhythmic Output After Decentralization in a Central Pattern Generator

    No full text
    Central pattern generators (CPGs) are neuronal networks that control vitally important rhythmic behaviors including breathing, heartbeat, and digestion. Understanding how CPGs recover activity after their rhythmic activity is disrupted has important theoretical and practical implications. Previous experimental and modeling studies indicated that rhythm recovery after central neuromodulatory input loss (decentralization) could be based entirely on activity-dependent mechanisms, but recent evidence of long-term conductance regulation by neuromodulators suggest that neuromodulator-dependent mechanisms may also be involved. Here we examined the effects of altering activity and the neuromodulatory environment before decentralization of the pyloric CPG in Cancer borealis on the initial phase of rhythmic activity recovery after decentralization. We found that pretreatments altering the network activity through shifting the ionic balance or the membrane potential of pyloric pacemaker neurons reduced the delay of recovery initiation after decentralization, consistent with the recovery process being triggered already during the pretreatment period through an activity-dependent mechanism. However, we observed that pretreatment with neuromodulators GABA and proctolin, acting via metabotropic receptors, also affected the initial phase of the recovery of pyloric activity after decentralization. Their distinct effects appear to result from interactions of their metabotropic effects with their effects on neuronal activity. Thus we show that the initial phase of the recovery process can be accounted for by the existence of distinct activity-and neuromodulator-dependent pathways. We propose a computational model that includes activity- and neuromodulator-dependent mechanisms of the activity recovery process, which successfully explains the experimental observations and predicts the results of key biological experiments
    corecore