4 research outputs found

    N-Doped Graphene Quantum Dots/Titanium Dioxide Nanocomposites: A Study of ROS-Forming Mechanisms, Cytotoxicity and Photodynamic Therapy

    Get PDF
    Titanium dioxide nanoparticles (TiO2 NPs) have been proven to be potential candidates in cancer therapy, particularly photodynamic therapy (PDT). However, the application of TiO2 NPs is limited due to the fast recombination rate of the electron (e−)/hole (h+) pairs attributed to their broader bandgap energy. Thus, surface modification has been explored to shift the absorption edge to a longer wavelength with lower e−/h+ recombination rates, thereby allowing penetration into deep-seated tumors. In this study, TiO2 NPs and N-doped graphene quantum dots (QDs)/titanium dioxide nanocomposites (N-GQDs/TiO2 NCs) were synthesized via microwave-assisted synthesis and the two-pot hydrothermal method, respectively. The synthesized anatase TiO2 NPs were self-doped TiO2 (Ti3+ ions), have a small crystallite size (12.2 nm) and low bandgap energy (2.93 eV). As for the N-GQDs/TiO2 NCs, the shift to a bandgap energy of 1.53 eV was prominent as the titanium (IV) tetraisopropoxide (TTIP) loading increased, while maintaining the anatase tetragonal crystal structure with a crystallite size of 11.2 nm. Besides, the cytotoxicity assay showed that the safe concentrations of the nanomaterials were from 0.01 to 0.5 mg mL−1. Upon the photo-activation of N-GQDs/TiO2 NCs with near-infrared (NIR) light, the nanocomposites generated reactive oxygen species (ROS), mainly singlet oxygen (1O2), which caused more significant cell death in MDA-MB-231 (an epithelial, human breast cancer cells) than in HS27 (human foreskin fibroblast). An increase in the N-GQDs/TiO2 NCs concentrations elevates ROS levels, which triggered mitochondria-associated apoptotic cell death in MDA-MB-231 cells. As such, titanium dioxide-based nanocomposite upon photoactivation has a good potential as a photosensitizer in PDT for breast cancer treatment

    Chemical Composition, Antioxidant and Cytoprotective Potentials of Carica papaya Leaf Extracts: A Comparison of Supercritical Fluid and Conventional Extraction Methods

    No full text
    The leaves of Carica papaya (CP) are rich in natural antioxidants. Carica papaya has traditionally been used to treat various ailments, including skin diseases. This study aims to decipher the antioxidant effects and phytochemical content of different CP leaf extracts (CPEs) obtained using supercritical carbon dioxide (scCO2) and conventional extraction methods. The antioxidant activities of CPEs were evaluated by cell-free (1,1-diphenyl-2-picryl-hydrazyl (DPPH) and ferric-reduced antioxidative power (FRAP)) and cell-based (H2O2) assay. Both C. papaya leaf scCO2 extract with 5% ethanol (CPSCE) and C. papaya leaf scCO2 extract (CPSC) exhibited stronger DPPH radical scavenging activity than conventional extracts. In the FRAP assay, two hydrophilic extracts (C. papaya leaf ethanol extract (CPEE) and C. papaya freeze-dried leaf juice (CPFD)) showed relatively stronger reducing power compared to lipophilic extracts. Cell-based assays showed that CPFD significantly protected skin fibroblasts from H2O2-induced oxidative stress in both pre-and post-treatment. CPEE protected skin fibroblasts from oxidative stress in a dose-dependent manner while CPSCE significantly triggered the fibroblast recovery after treatment with H2O2. GC-MS analysis indicated that CPSCE had the highest α-tocopherol and squalene contents. By contrast, both CP hydrophilic extracts (CPEE and CPFD) had a higher total phenolic content (TPC) and rutin content than the lipophilic extracts. Overall, CPEs extracted using green and conventional extraction methods showed antioxidative potential in both cell-based and cell-free assays due to their lipophilic and hydrophilic antioxidants, respectively
    corecore