30 research outputs found

    Open problem: Tightness of maximum likelihood semidefinite relaxations

    Full text link
    We have observed an interesting, yet unexplained, phenomenon: Semidefinite programming (SDP) based relaxations of maximum likelihood estimators (MLE) tend to be tight in recovery problems with noisy data, even when MLE cannot exactly recover the ground truth. Several results establish tightness of SDP based relaxations in the regime where exact recovery from MLE is possible. However, to the best of our knowledge, their tightness is not understood beyond this regime. As an illustrative example, we focus on the generalized Procrustes problem

    Large-Scale Sensor Network Localization via Rigid Subnetwork Registration

    Full text link
    In this paper, we describe an algorithm for sensor network localization (SNL) that proceeds by dividing the whole network into smaller subnetworks, then localizes them in parallel using some fast and accurate algorithm, and finally registers the localized subnetworks in a global coordinate system. We demonstrate that this divide-and-conquer algorithm can be used to leverage existing high-precision SNL algorithms to large-scale networks, which could otherwise only be applied to small-to-medium sized networks. The main contribution of this paper concerns the final registration phase. In particular, we consider a least-squares formulation of the registration problem (both with and without anchor constraints) and demonstrate how this otherwise non-convex problem can be relaxed into a tractable convex program. We provide some preliminary simulation results for large-scale SNL demonstrating that the proposed registration algorithm (together with an accurate localization scheme) offers a good tradeoff between run time and accuracy.Comment: 5 pages, 8 figures, 1 table. To appear in Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing, April 19-24, 201
    corecore