35 research outputs found

    Osseointegration of Maxillary Dental Implants in Diabetes Mellitus Patients: A Randomized Clinical Trial Human Histomorphometric Study

    No full text
    Background: Survival of dental implants in well-controlled Type 2 diabetes (T2DM) was found to be comparable to that in healthy patients. However, to our best knowledge, there have been no studies of the bone histomorphometry of osseointegration in patients with Type 2 diabetes. Purpose: To compare bone-implant-contact (BIC) and new bone formation between well-controlled Type 2 diabetes with HbA1c of less than 8% and healthy controls. Methods: 10 diabetic (T2DM) patients and 10 healthy controls were selected. Each patient received a 2.5 mm × 5 mm micro-implant in the maxilla, in either the premolar or first molar area. After 8 weeks of healing, the micro-implant was retrieved using a trephine bur and sent for bone histomorphometric analysis. A commercial titanium implant was immediately placed as the conventional treatment. Results: The mean BIC (30.73%) in T2DM patients was significantly lower than in the healthy patients (41.75%) (p = 0.01). New bone formation around the implant surface was reduced in T2DM patients (36.25%) compared to that in the control group (44.14%) (p = 0.028). The Pearson correlation coefficient revealed a strong correlation between increased HbA1c and decreased BIC (p < 0.05) and decreased new bone formation (p < 0.05). Conclusions: Within the limitation of this study, bone-to-implant contact and bone healing around dental implants in T2DM patients were significantly lower than in healthy patients

    The Learning Curve of Artificial Intelligence for Dental Implant Treatment Planning: A Descriptive Study

    No full text
    Introduction: Cone-beam computed tomography (CBCT) has been applied to implant dentistry. The increasing use of this technology produces a critical number of images that can be used for training artificial intelligence (AI). Objectives: To investigate the learning curve of the developed AI for dental implant planning in the posterior maxillary region. Methods: A total of 184 CBCT image sets of patients receiving posterior maxillary implants were processed with software (DentiPlan Pro version 3.7; NECTEC, NSTDA, Thailand) to acquire 316 implant position images. The planning software image interfaces were anonymously captured with full-screen resolution. Three hundred images were randomly sorted to create six data sets, including 1–50, 1–100, 1–150, 1–200, 1–250, and 1–300. The data sets were used to develop AI for dental implant planning through the IBM PowerAI Vision platform (IBM Thailand Co., Ltd., Bangkok, Thailand) by using a faster R-CNN algorithm. Four data augmentation algorithms, including blur, sharpen, color, and noise, were also integrated to observe the improvement of the model. After the testing process with 16 images that were not included in the training set, the recorded data were analyzed for detection and accuracy to generate the learning curve of the model. Results: The learning curve revealed some similar patterns. The curve trend of the original and blurred augmented models was in a similar pattern in the panoramic image. In the last training set, the blurred augmented model improved the detection by 12.50%, but showed less accuracy than the original model by 18.34%, whereas the other three augmented models had different patterns. They were continuously increasing in both detection and accuracy. However, their detection dropped in the last training set. The colored augmented model demonstrated the best improvement with 40% for the panoramic image and 18.59% for the cross-sectional image. Conclusions: Within the limitation of the study, it may be concluded that the number of images used in AI development is positively related to the AI interpretation. The data augmentation techniques to improve the ability of AI are still questionable

    Removal torque pattern of a combined cone and octalobule index implant-abutment connection at different cyclic loading: an in-vitro experimental study

    No full text
    Abstract Background Despite the high survival rate of dental implants, screw loosening is frequently reported. Screw loosening can cause a misfit of the implant-abutment connection leading to peri-implantitis or abutment screw fracture. Therefore, studies about related factors and mechanism of screw loosening are needed. The aim of this study was to evaluate the decreasing pattern of removal torque values (RTVs) of a combined cone and octalobule index implant-abutment connection under different numbers of mechanical loading cycles. Materials and methods The study was performed in accordance with ISO 14801:2007. Eighty-four implants with the combined cone and octalobule index implant-abutment connection (PW Plus dental implant system, PW Plus Company) were used. All abutment screws were tightened 30 N cm twice with a 10-min interval. The control group was without cyclic loading and the experimental groups underwent different numbers of loading cycles until 2,000,000 cycles. Then, the abutment screws of all samples were untightened to measure the RTVs. The data were analyzed using ANOVA and Tukey’s HSD test. Results The RTVs of the control group decreased 7.78% compared to the insertion torque. All experimental groups from 50,000 to 2,000,000 cycles showed significant decreases in RTVs compared to the control group (P < 0.05). RTVs in the group of 50,000 cycles to 1,800,000 cycles did not change significantly, but there was a significant reduction of RTVs in the group of 2,000,000 cycles when compared to the group of 50,000 cycles (P < 0.05). Conclusions According to the setting condition for the fatigue test complied to ISO 14801:2007, the RTVs of the combined cone and octalobule index implant-abutment connection reduced significantly after 50,000 cycles and did not change significantly until 2,000,000 cycles

    Development of Controlled-Release Carbamide Peroxide Loaded Nanoemulgel for Tooth Bleaching: In Vitro and Ex Vivo Studies

    No full text
    Burst release of carbamide peroxide (CP) from traditional hydrogels causes severe inflammation to periodontal tissues. The present study explores the development of a novel CP nanoemulgel (CP-NG), an oil-in-water nanoemulsion-based gel in which CP was loaded with a view to controlling CP release. CP solid dispersions were prepared, using white soft paraffin or polyvinylpyrrolidone-white soft paraffin mixture as a carrier, prior to formulating nanoemulsions. It was found that carrier type and the ratio of CP to carrier affected drug crystallinity. Nanoemulsions formulated from the optimized CP solid dispersions were used to prepare CP-NG. It was found that the ratio of drug to carrier in CP solid dispersions affected the particle size and zeta potential of the nanoemulsions as well as drug release behavior and tooth bleaching efficacy of CP-NG. Drug release from CP-NG followed a first-order kinetic reaction and the release mechanism was an anomalous transport. Drug release rate decreased with an increase in solid dispersion carriers. CP-NG obtained from the solid dispersion with a 1:1 ratio of CP to the polymer mixture is suitable for sustaining drug release with high tooth bleaching efficacy and without reduction of enamel microhardness. The developed CP-NG is a promising potential tooth bleaching formulation

    Comparative Study between an Immediate Loading Protocol Using the Digital Workflow and a Conventional Protocol for Dental Implant Treatment: A Randomized Clinical Trial

    No full text
    Background: The purposes of this randomized clinical trial study was to compare the immediate loading of dental implants while employing digital workflow and conventional implants in terms of the success rate, marginal bone level, and patient satisfaction. Methods: Fifty patients who had edentulous area on the mandibular premolar or molar area were included in the study. Twenty-five patients were assigned to immediate loading implant treatment using the digital technique and 25 patients were assigned to conventional loading implant treatment. In the first group, the patients were received digital impression (Cerec Omnicam, Dentsply Sirona&#174;, York, PA, USA), designed, producing zirconia crown, and inserted on the same surgery day. The second group, after a healing period of three months, was received analog impression following conventional impression for the zirconia crown. Clinical outcome and radiographic bone level were evaluated after three, six, and 12 months. Patient satisfaction was measured at 12 months after inserting the implant. Results: There was no implants and protheses failure in both groups. The mean resonance frequency analysis values at the day of surgery were 78.26 &#177; 4.09 in immediate loading using the digital group (ILD) and 73.74 &#177; 5.14 in the conventional loading group (CL), respectively. Insertion torque values at the day of surgery were 36.60 &#177; 12.64 in ILD and 38.8 &#177; 12.19 CL, respectively. The marginal bone level in CL at three, six, and 12 months were 0.14 &#177; 0.28 mm, 0.18 &#177; 0.30 mm, and 0.17 &#177; 0.29 mm, respectively, while in ILD at three, six, and 12 months were 0.18 &#177; 0.33 mm and 0.16 &#177; 0.27 mm and 0.15 &#177; 0.31, respectively. There was no statistically significant difference between the two groups. Only one question in patient satisfaction&#8217;s questionnaire was &#8220;Now, can your dental implant and crown be used well?&#8221; had been significantly different in favor to the conventional group. Conclusion: Within the limitation of this study, it may be concluded that, after one-year follow up, there were no statistically significant differences between the immediate loading of dental implants employed from the digital workflow and conventional implant treatment technique in the success rate and marginal bone level. In patient satisfaction, there was only statistic significant difference in question related to implant prosthetic function in favor of the CL group, whereas the question concerning speaking, cleansing, price, and expectation displayed no difference

    Effect of the Location of Dental Mini-Implants on Strain Distribution under Mandibular Kennedy Class I Implant-Retained Removable Partial Dentures

    No full text
    Purpose. To investigate the effect of minidental implant location on strain distributions transmitted to tooth abutments and dental minidental implants under mandibular distal extension removable partial denture. Materials and Methods. A mandibular Kennedy Class I distal extension model missing teeth 35–37 and 45–47 was constructed. Six dental mini-implants were placed at positions A, B, and C, where position A was 6.5 mm distal to the abutment teeth with 5 mm between each position. Fourteen uniaxial strain gauges were bonded on the model at the region of dental mini-implant and abutment (first premolar). Four groups were designated according to the location of the mini-implants. A load of 150 N and 200 N was applied using an Instron testing machine. Loadings consisted of bilateral and unilateral loading. Comparisons of the mean microstrains among all strain gauges in all situations were analyzed. Results. Variation in mini-implant locations induced local strains in different areas. Strains at the tooth abutment were significantly decreased in the group in which implants were placed mesially. Strains around the mini-implants showed different patterns when loaded with different loading conditions. The group in which implants were placed distally showed the lowest strains compared to other groups. Conclusion. Mesially placed mini-implants showed the lowest strain around abutment teeth, while a distally-placed mini-implants presented the lowest strain around mini-implants themselves. Under favorable biting force, mini-implant is an option to assist mandibular distal extension removable partial denture. Mesially placed mini-implants are recommended when the abutment has periodontally compromised conditions and a distally placed mini-implant when periodontal conditions are stable
    corecore