184 research outputs found
Analisis Implementasi Supervisi Akademik sebagai Upaya Peningkatan Profesionalisme Guru Agama (Studi Kasus di MTsN Kabupaten Brebes dan SMP Al Irsyad Tegal)
The aims of this research are to find out; (1) the urgency of academic supervision at SMP Al-Irsyad Tegal and MTsN Brebes, Jawa Tengah; (2) the picture of the academic supervision implementation, obstacles, and solutions; (3) the positive impact of the implementation of academic supervision in developing teacher of religion professionalism in SMP Al-Irsyad Tegal and MTsN Kabupaten Brebes, Jawa Tengah. The result showed that: (1) Academic supervision is necessary to do by a supervisor, in this case, the headmaster SMP Al-Irsyad Tegal and MTsN Brebes, which had done supervision activity so school activities can be directed to achieve the expected education purposes. (2) The implementation of educators supervision either at SMP Al-Irsyad Tegal or MTsN Model Brebes could be reviewed in some aspects, those are the purpose of supervision, the function of supervision, the types and technique of the implementation of supervision used. As for the steps had done, it included planning, implementing, and evaluating of supervision. Meanwhile, the obstacles in the implementation of supervision were a complexity of the headmaster's duty as the leader, lack of preparation of supervised teachers and sometimes happens at the same time with other activities, such as training, workshop, etc. The effort made was by coordinating with senior teachers. (3) The positive impact of the implementation of academic supervision is motivating supervised teachers of the importance to improve competence, so the quality of the learners will increase, and then it shows more of a professional teacher
Last interglacial temperature evolution – a model inter-comparison
Abstract. There is a growing number of proxy-based reconstructions detailing the climatic changes during the Last Interglacial period. This period is of special interest because large parts of the globe were characterized by a warmer-than-present-day climate, making this period an interesting test bed for climate models in the light of projected global warming. However, mainly because synchronizing the different records is difficult, there is no consensus on a global picture of Last Interglacial temperature changes. Here we present the first model inter-comparison of transient simulations covering the Last Interglacial period. By comparing the different simulations we aim at investigating the robustness of the simulated surface air temperature evolution. The model inter-comparison shows a robust Northern Hemisphere July temperature evolution characterized by a maximum between 130–122 ka BP with temperatures 0.4 to 6.8 K above pre-industrial values. This temperature evolution is in line with the changes in June insolation and greenhouse-gas concentrations. For the evolution of July temperatures in the Southern Hemisphere, the picture emerging from the inter-comparison is less clear. However, it does show that including greenhouse-gas concentration changes is critical. The simulations that include this forcing show an early, 128 ka BP July temperature anomaly maximum of 0.5 to 2.6 K. The robustness of simulated January temperatures is large in the Southern Hemisphere and the mid-latitudes of the Northern Hemisphere. In these latitudes maximum January temperature anomalies of respectively −2.5 to 2 K and 0 to 2 K are simulated for the period after 118 ka BP. The inter-comparison is inconclusive on the evolution of January temperatures in the high-latitudes of the Northern Hemisphere. Further investigation of regional anomalous patterns and inter-model differences indicate that in specific regions, feedbacks within the climate system are important for the simulated temperature evolution. Firstly in the Arctic region, changes in the summer sea-ice cover control the evolution of Last Interglacial winter temperatures. Secondly, for the Atlantic region, the Southern Ocean and the North Pacific, possible changes in the characteristics of the Atlantic meridional overturning circulation are critical. The third important feedback, having an impact on the temperature evolution of the Northern Hemisphere, is shown to be the presence of remnant continental ice from the preceding glacial period. Another important feedback are changes in the monsoon regime which controls the evolution of temperatures over parts of Africa and India. Finally, the simulations reveal an important land-sea contrast, with temperature changes over the oceans lagging continental temperatures by up to several thousand years. The aforementioned feedback mechanisms tend to be highly model-dependent, indicating that specific proxy-data is needed to constrain future climate simulations and to further enhance our understanding of the evolution of the climate during the Last Interglacial period
Exact Solution of the strong coupling t-V model with twisted boundary conditions
We present the solution of the one-dimensional t-V model with twisted
boundary conditions in the strong coupling limit, t<<V and show that this model
can be mapped onto the strong coupling Hubbard chain threaded by a fictitious
flux proportional to the total momentum of the charge carriers. The high energy
eigenstates are characterized by a factorization of degrees of freedom
associated with configurations of soliton and antisoliton domains and degrees
of freedom associated with the movement of ``holes'' through these domains. The
coexistence of solitons and antisolitons leads to a strange flux dependence of
the eigenvalues. We illustrate the use of this solution, deriving the full
frequency dependence of the optical conductivity at half-filling and zero
temperature.Comment: 11 pages, 1 figure; to be published in Physical Review
Evolution of Eastern Equatorial Pacific Seasonal and Interannual Variability in response to orbital forcing during the Holocene and Eemian from Model Simulations
Characteristics of the seasonal and interannual sea surface temperature (SST) variability in the eastern equatorial Pacific (EEP) over last two interglacials, the Holocene and Eemian, are analyzed using transient climate simulations with the Kiel Climate Model (KCM). There is a tendency towards a strengthening of the seasonal as well as the El Niño/Southern Oscillation‐ (ENSO) related variability from the early to the late interglacials. The weaker EEP SST annual cycle during the early interglacials is mainly result of insolation‐forced cooling during its warm phase and dynamically‐induced warming during its cold phase. Enhanced convection over northern South America weakens northeasterlies in the EEP leading to weaker equatorial upwelling, deeper thermocline and subsequent warming in this region. We show that a negative ENSO modulation of the annual cycle operates only on short timescales and does not affect their evolution on orbital time scales where both ENSO and annual cycle show similar tendencies to increase
Finite-Temperature Transport in Finite-Size Hubbard Rings in the Strong-Coupling Limit
We study the current, the curvature of levels, and the finite temperature
charge stiffness, D(T,L), in the strongly correlated limit, U>>t, for Hubbard
rings of L sites, with U the on-site Coulomb repulsion and t the hopping
integral. Our study is done for finite-size systems and any band filling. Up to
order t we derive our results following two independent approaches, namely,
using the solution provided by the Bethe ansatz and the solution provided by an
algebraic method, where the electronic operators are represented in a
slave-fermion picture. We find that, in the U=\infty case, the
finite-temperature charge stiffness is finite for electronic densities, n,
smaller than one. These results are essencially those of spinless fermions in a
lattice of size L, apart from small corrections coming from a statistical flux,
due to the spin degrees of freedom. Up to order t, the Mott-Hubbard gap is
\Delta_{MH}=U-4t, and we find that D(T) is finite for n<1, but is zero at
half-filling. This result comes from the effective flux felt by the holon
excitations, which, due to the presence of doubly occupied sites, is
renormalized to
\Phi^{eff}=\phi(N_h-N_d)/(N_d+N_h), and which is zero at half-filling, with
N_d and N_h being the number of doubly occupied and empty lattice sites,
respectively. Further, for half-filling, the current transported by any
eigenstate of the system is zero and, therefore, D(T) is also zero.Comment: 15 pages and 6 figures; accepted for PR
Response of the Hydrological Cycle to Orbital and Greenhouse Gas Forcing
The sensitivity of the hydrological cycle to changes in orbital forcing and atmospheric greenhouse gas (GHG) concentrations is assessed using a fully coupled atmosphere-ocean-sea ice general circulation model (Kiel Climate Model). An orbitally-induced intensification of the summer monsoon circulation during the Holocene and Eemian drives enhanced water vapor advection into the Northern Hemisphere, thereby enhancing the rate of water vapor changes by about 30% relative to the rate given by the Clausius-Clapeyron Equation, assuming constant relative humidity. Orbitally-induced changes in hemispheric-mean precipitation are fully attributed to inter-hemispheric water vapor exchange in contrast to a GHG forced warming, where enhanced precipitation is caused by increased both the moisture advection and evaporation. When considering the future climate on millennial time scales, both forcings combined are expected to exert a strong effect
No Consistent Simulated Trends in the Atlantic Meridional Overturning Circulation for the Past 6,000 Years
The Atlantic Meridional Overturning Circulation (AMOC) is a key feature of the North Atlantic with global ocean impacts. The AMOC's response to past changes in forcings during the Holocene provides important context for the coming centuries. Here, we investigate AMOC trends using an emerging set of transient simulations using multiple global climate models for the past 6,000 years. Although some models show changes, no consistent trend in overall AMOC strength during the mid-to-late Holocene emerges from the ensemble. We interpret this result to suggest no overall change in AMOC, which fits with our assessment of available proxy reconstructions. The decadal variability of the AMOC does not change in ensemble during the mid- and late-Holocene. There are interesting AMOC changes seen in the early Holocene, but their nature depends a lot on which inputs are used to drive the experiment
Enhanced Lifetime Of Excitons In Nonepitaxial Au/cds Core/shell Nanocrystals
The ability of metal nanoparticles to capture light through plasmon excitations offers an opportunity for enhancing the optical absorption of plasmon-coupled semiconductor materials via energy transfer. This process, however, requires that the semiconductor component is electrically insulated to prevent a backward charge flow into metal and interfacial states, which causes a premature dissociation of excitons. Here we demonstrate that such an energy exchange can be achieved on the nanoscale by using nonepitaxial Au/CdS core/shell nanocomposites. These materials are fabricated via a multistep cation exchange reaction, which decouples metal and semiconductor phases leading to fewer interfacial defects. Ultrafast transient absorption measurements confirm that the lifetime of excitons in the CdS shell (tau approximate to 300 ps) is much longer than lifetimes of excitons in conventional, reduction-grown Au/CdS heteronanostructures. As a result, the energy of metal nanoparticles can be efficiently utilized by the semiconductor component without undergoing significant nonradiative energy losses, an important property for catalytic or photovoltaic applications. The reduced rate of exciton dissociation in the CdS domain of Au/CdS nanocomposites was attributed to the nonepitaxial nature of Au/CdS interfaces associated with low defect density and a high potential barrier of the interstitial phase
- …